H-infinity control with D-stability constraint for uncertain repetitive processes

Nizar TOUJENI, Chaouki MNASRI, Moncef GASMI
Computer Laboratory for Industrial Systems (LISI)
National Institute of Applied Sciences and Technology (INSAT), Carthage University
Tunisia

Abstract

This paper is interested in the problem of \mathbf{H} infinity control with D-stability constraint for uncertain continuous-time repetitive systems with external disturbances. The main objective is the design of a control law, such that the system closed-loop poles are placed within a particular region of the complex plane for all admissible uncertainties. All of the obtained conditions are formulated in the form of linear matrix inequalities and solutions gives the agreed controller gains. Finally, a numerical example is given to illustrate the effectiveness of the proposed approach.

Keywords - Repetitive control, uncertain linear systems, robust control, linear matrix inequality, \boldsymbol{H}-infinity and D-stability.

I. Introduction

In engineering practice, repetitive processes are very common and are usually encountered in many industrial applications such as power supply systems [1-2], robotic manipulators [3], CD tracking [4], computer disk drives [5-6], etc. In those applications, the control systems are usually desired tracking or rejecting periodic exogenous signals with high control precision.
The repetitive control was first presented by Inoue et al. and applied to the control of a contouring servo system and a power supply for a proton synchrotron [7-8]. After that, it has been applied to many problems. The repetitive control affords a successfully practicable solution and that is a control scheme applied to systems that must cancel error, track periodic reference signals or reject periodic disturbances.
Referring to offered Wu et al. [9-13], some design methods of repetitive control system for a class of linear system based on two-dimensional continuous/discrete hybrid model are presented. The problem for the design repetitive controller is converted in a problem for a continuous-discrete twodimensional system. After that, this problem is solved by combing two-dimensional Lyapunov theory with linear matrix inequalities approach.
In practice, the influence of external disturbances and uncertainties in the plant must be strictly considered when the repetitive controller is applied to real systems. In many cases, those parameters cause instability in the control system. The stability problem with the uncertainties is named robust stability problem. Yamada and al. [14-18] were proposed some design methods for repetitive control systems with considering disturbances and uncertainties.

In robust control system, stability of the closed-loop system makes the minimum specification. Sometimes, owing to bad transient responses in many applications or real physical systems, the system dynamic features do not make the desired goals such as transient oscillations, the rise time, the settling time, etc.
A satisfying performances can be achieved by placing the closed-loop pole to in an appropriate region of the complex plane. Enforcing all poles of a system in a specified region is named D-stability problem.
The main contribution of this paper is to study the problem of H-infinity control with D-stability constraint for uncertain continuous-time repetitive systems with external disturbances for all admissible uncertainties. In the first part, we will prove an equivalence between a two-dimensional control system and a repetitive control scheme such that study of convergence and stability properties. In the second part, all of the obtained conditions are formulated in the form of linear matrix inequalities and solutions gives the agreed controller gains. Finally, an example shows the efficiency of the proposed approach will be presented.

II. PRoblem Formulation and preliminaries

Consider the uncertain linear system defined by the following state-space equation

$$
\left\{\begin{array}{l}
\dot{x}(t)=(A+\Delta A) x(t)+\left(B_{u}+\Delta B_{u}\right) u(t)+\left(B_{d}+\Delta B_{d}\right) d(t) \tag{1}\\
y(t)=C x(t)+D_{u} u(t)
\end{array}\right.
$$

where $x(t)$ is the state vector, $u(t)$ is the input control, $y(t)$ is the output of the system and $d(t)$ is an external disturbance. A, B_{u}, B_{d}, C and D_{u} are real matrices. $\Delta A, \Delta B_{u}$ and ΔB_{d} denote real matrix functions representing norm-bounded time varying parametric uncertainties in the system model.

We consider the following assumptions:
(i) The pair $\left(A, B_{u}\right)$ is stabilizable
(ii) $d(t)$ is an external disturbance signal with finite energy in the space $L_{2}[0,+\infty)$
(iii) Uncertainties under consideration have the following form

$$
\left\{\begin{array}{l}
A_{\Delta}=A+\Delta A=A+H F(t) E_{A} \tag{2}\\
B_{u \Delta}=B_{u}+\Delta B_{u}=B_{u}+H F(t) E_{B u} \\
B_{d \Delta}=B_{d}+\Delta B_{d}=B_{d}+H F(t) E_{B d} \\
F^{T}(t) \cdot F(t)<I
\end{array}\right.
$$

where I is the identity matrix of appropriate dimensions. $F(t)$ is unknown real time varying matrix contain uncertain parameters and $H, E_{A}, E_{B u}$ and $E_{B d}$ are known constant real matrices of appropriate dimensions denote how the uncertain parameters $F(t)$ affect the system (1).

The output error is defined by $e(t)=r(t)-y(t)$ where $r(t)=r(t+T)$ is the periodic reference and T is the fundamental period.

The robust repetitive control law proposed of the system is

$$
\begin{align*}
& u(t)=G_{\text {rob }} x(t)+G_{r e p} \Phi(t) \tag{3}\\
& \Phi(t)= \begin{cases}e(t), & 0 \leq t<T \\
\Phi(t-T)+e(t), & t \geq T\end{cases} \tag{4}
\end{align*}
$$

where $\Phi(t)$ defines the output signal of the repetitive controller and pair $\left(G_{\text {rob }}, G_{\text {rep }}\right)$ creates gain matrices to be determined. The first describes control action and the second describes the learning action.
Consider now the variables $k \in \mathbb{N}$ which used to describe learning between periods, $\tau \in[0, T[$ is a domain to depict control inside a period and $\psi(t)$ which is described in the time domain by

$$
\left\{\begin{array}{l}
\psi(t)=\psi(k T+\tau):=\psi_{k}(\tau) \tag{5}\\
\Delta \psi(t)=\psi(t)-\psi(t-T):=\Delta \psi_{k}(\tau)
\end{array}\right.
$$

Then, according to (1) - (5), we have

$$
\begin{align*}
& \Delta \dot{x}_{k}(\tau)=A_{\Delta} \Delta x_{k}(\tau)+B_{u \Delta} \Delta u_{k}(\tau)+B_{d \Delta} \Delta d_{k}(\tau) \tag{6}\\
& e_{k}(\tau)=e_{k-1}(\tau)-C \Delta x_{k}(\tau)-D_{u} \Delta u_{k}(\tau) \tag{7}
\end{align*}
$$

Equations (6) and (7) creates a two-dimensional (2D) continuous-discrete hybrid model of the repetitive control system.
Next, the 2D control law can be written

$$
\begin{equation*}
\Delta u_{k}(\tau)=G_{1} \Delta x_{k}(\tau)+G_{2} e_{k-1}(\tau) \tag{8}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
G_{1}=\left(I+G_{\text {rep }} D_{u}\right)^{-1}\left(G_{\text {rob }}-G_{r e p} C\right) \tag{9}\\
G_{2}=\left(I+G_{r e p} D_{u}\right)^{-1} G_{\text {rep }}
\end{array}\right.
$$

Therefore, it is easy to conclude that the design of a 2 D control law (8) is equally equivalent to design of a control law (3). Thus, the control system (3) is stable if a 2D stabilizing control law (8) is designed for the 2D system (9) and the matrices gains are given by

$$
\left\{\begin{array}{l}
G_{r o b}=G_{1}+G_{2}\left(I-D_{u} G_{2}\right)^{-1}\left(D_{u} G_{1}+C\right) \tag{10}\\
G_{r e p}=G_{2}\left(I-D_{u} G_{2}\right)^{-1}
\end{array}\right.
$$

Consequently, it is easy to adjust independently the robust control and learning actions using G_{1} and G_{2} respectively because the control action depends on both gains G_{1} and G_{2}, while the learning action depends only on G_{2}. However, it is very difficult to do that using $G_{\text {rob }}$ and $G_{\text {rep }}$.

In order to achieve the main results, some necessaries preliminaries will be introducing.

Lemma 1. (Shur complement) [19]: For any symmetric matrix, Θ, of the form $\Theta=\left[\begin{array}{ll}\Theta_{11} & \Theta_{11}^{T} \\ \Theta_{12} & \Theta_{22}\end{array}\right]$. If Θ_{22} is invertible then the following property hold:

$$
\begin{equation*}
\Theta<0 \text { if } \Theta_{22}<0 \text { and } \Theta_{11}-\Theta_{12}^{T} \Theta_{22}^{-1} \Theta_{12}<0 \tag{11}
\end{equation*}
$$

Lemma 2. [20]: Given matrices $K=K^{T}, J, F$ and E of appropriate dimensions, then

$$
\begin{equation*}
K+J F E+(J F E)^{T}<0 \tag{12}
\end{equation*}
$$

for all F satisfying $F^{T} F \leq I$, if and only if there exists some $\varepsilon>0$ such that

$$
\begin{equation*}
K+\varepsilon J J^{T}+\varepsilon^{-1} E^{T} E<0 \tag{13}
\end{equation*}
$$

Definition 1. [21]: An LMI region is defined by a subset of the complex plane given by

$$
\begin{equation*}
D_{z}=\left\{z \in \mathbb{C}: \Upsilon+\Lambda z+\Lambda^{T} \bar{z}<0\right\} \tag{14}
\end{equation*}
$$

where $\Upsilon=\Upsilon^{T}$ and Λ are two real matrices.
In this paper, LMI region chosen is the intersection of three regions given by
D_{1} : conical sector : $\left\{\begin{array}{l}a \operatorname{Re}(z)+|b \operatorname{Im}(z)|<0 \\ h=\arctan \left(-\frac{a}{b}\right)\end{array}\right.$
D_{2} : disk of radius r centered at $(q, 0)$
$D_{3}: \alpha-$ stability : $\operatorname{Re}(z)<-\alpha$

Theorem 1. [21]: Let Π a real matrix and $D_{z}=D_{1} \cap D_{2} \cap D_{3}$ be an LMI region. All the eigenvalues of Π are in LMI region D_{z} if exists a symmetric matrix Ψ such that we have the followings LMI

$$
\begin{align*}
& {\left[\begin{array}{cc}
h\left(\Pi \Psi+\Psi \Pi^{T}\right) & (*) \\
\Psi \Pi^{T}-\Pi \Psi & h\left(\Pi \Psi+\Psi \Pi^{T}\right)
\end{array}\right]<0} \tag{15}\\
& {\left[\begin{array}{cc}
-r \Psi & (*) \\
-q \Psi+\Psi \Pi^{T} & -r \Psi
\end{array}\right]<0} \tag{16}\\
& 2 \alpha \Psi+\Pi \Psi+\Psi \Pi^{T}<0 \tag{17}
\end{align*}
$$

In the next section, we will study the problem of H_{∞} control with D-stability constraint for uncertain continuous-time repetitive systems which is used to analyze the system stability and to prove the convergence of the tracking error. The synthesis of this control law will be based on the optimization problem under LMI constraints.

III. MAIN RESULTS

This section is devoted to developing the robust H_{∞} control based on a repetitive control for uncertain system (1) and it is desired that the poles of the closed-loop system remain in region D_{z} of the complex plane.

Consider the following two-dimensional Lyapunov function

$$
\begin{equation*}
V_{k}(\tau)=V_{1, k}(\tau)+V_{2, k}(\tau)=\Delta x_{k}^{T}(\tau) P \Delta x_{k}(\tau)+e_{k}^{T}(\tau) Q e_{k}(\tau)(\tag{18}
\end{equation*}
$$

where $P>0$ and $Q>0$ are a symmetrical matrices.
The H_{∞} disturbance attenuation holds if there exist a scalar $\gamma>0$ such that the Hamiltonian satisfies

$$
\begin{equation*}
\mathbb{H}_{k}(\tau)=\Delta V_{k}(\tau)+e_{k-1}^{T}(\tau) e_{k-1}(\tau)-\gamma^{2} \Delta d_{k}^{T}(\tau) \Delta d_{k}(\tau)<0 \tag{19}
\end{equation*}
$$

A sufficient existence conditions solutions must be satisfied and the problem of control law synthesis is solved by the following theorem:
Theorem 2.: For the uncertain system (1) and a given constant $\gamma>0$, if there exists two symmetric matrices $\Pi_{1}>0$, $\Pi_{2}>0$ and two matrices Γ_{1}, Γ_{2} and a scalar $\varepsilon>0$ satisfying the followings LMI:

$$
\left[\begin{array}{ccccccccc}
-\Pi_{2} & (*) & (*) & (*) & (*) & (*) & (*) & (*) & (*) \tag{20}\\
\alpha_{1} & \alpha_{2} & (*) & (*) & (*) & (*) & (*) & (*) & (*) \\
\alpha_{3} & \Gamma_{2}^{T} B_{u}^{T} & -\Pi_{2} & (*) & (*) & (*) & (*) & (*) & (*) \\
0 & B_{d}^{T} & 0 & -\gamma^{2} I & (*) & (*) & (*) & (*) & (*) \\
0 & \alpha_{4} & 0 & 0 & -\Pi_{2} & (*) & (*) & (*) & (*) \\
0 & 0 & 0 & 0 & 0 & -\Pi_{2} & (*) & (*) & (*) \\
0 & 0 & I & 0 & 0 & 0 & -I & (*) & (*) \\
0 & \varepsilon H & 0 & 0 & 0 & 0 & 0 & -\varepsilon I & (*) \\
0 & \alpha_{5} & E_{B u} \Gamma_{2} & E_{B d} & 0 & 0 & 0 & 0 & -\varepsilon I
\end{array}\right]<0
$$

$$
\begin{align*}
& {\left[\begin{array}{cccccc}
h \alpha_{2} & \left({ }^{*}\right) & \left({ }^{*}\right) & (*) & \left({ }^{*}\right) & \left({ }^{*}\right) \\
\alpha_{6} & h \alpha_{2} & \left({ }^{*}\right) & (*) & \left({ }^{*}\right) & \left({ }^{*}\right) \\
h H^{T} & -H^{T} & -\varepsilon I & (*) & \left({ }^{*}\right) & \left({ }^{*}\right) \\
H^{T} & h H^{T} & 0 & -\varepsilon I & \left({ }^{*}\right) & \left({ }^{*}\right) \\
\alpha_{5} & 0 & 0 & 0 & -\varepsilon I & (*) \\
0 & \alpha_{5} & 0 & 0 & 0 & -\varepsilon I
\end{array}\right]<0} \tag{21}\\
& {\left[\begin{array}{cccc}
-r \Pi_{1} & \left({ }^{*}\right) & \left({ }^{*}\right) & \left({ }^{*}\right) \\
-q \Pi_{1}+\Pi_{1} A^{T}+\Gamma_{1} B_{u}^{T} & -r \Pi_{1} & \left({ }^{*}\right) & \left({ }^{*}\right) \\
H^{T} & 0 & -\varepsilon I & \left({ }^{*}\right) \\
0 & \alpha_{5} & 0 & -\varepsilon I
\end{array}\right]<0} \tag{22}\\
& {\left[\begin{array}{ccc}
2 \alpha \Pi_{1}+\alpha_{2} & (*) & \left({ }^{*}\right) \\
\varepsilon H^{T} & -\varepsilon I & (*) \\
\alpha_{5} & 0 & -\varepsilon I
\end{array}\right]<0} \tag{23}
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
\alpha_{1}=\Pi_{1} C^{T}+\Gamma_{1}^{T} D_{u}^{T} \tag{24}\\
\alpha_{2}=\Pi_{1} A^{T}+A \Pi_{1}+\Gamma_{1}^{T} B_{u}^{T}+B_{u} \Gamma_{1} \\
\alpha_{3}=\Gamma_{2}^{T} D_{u}^{T}-\Pi_{2} \\
\alpha_{4}=C \Pi_{1}+D_{u} \Gamma_{1} \\
\alpha_{5}=E_{A} \Pi_{1}+E_{B_{u}} \Gamma_{1} \\
\alpha_{6}=\Pi_{1} A^{T}-A \Pi_{1}+\Gamma_{1}^{T} B_{u}^{T}-B_{u} \Gamma_{1}
\end{array}\right.
$$

then the system is generalized quadratically D-stable with H_{∞} performance γ. After resolution of the LMI (20-23), the stabilization gains are given by

$$
\begin{equation*}
G_{1}=\Gamma_{1} \cdot \Pi_{1}^{-1}, \quad G_{2}=\Gamma_{2} \cdot \Pi_{2}^{-1} \tag{25}
\end{equation*}
$$

Proof. :

The associated increment with Lyapunov function is defined by

$$
\begin{align*}
\Delta V_{k}(\tau)= & \dot{V}_{1, k}(\tau)+\Delta V_{2, k}(\tau) \\
= & \Delta \dot{x}_{k}^{T}(\tau) P \Delta x_{k}(\tau)+\Delta x_{k}^{T}(\tau) P \Delta \dot{x}_{k}(\tau) \tag{26}\\
& +e_{k-1}^{T}(\tau) Q e_{k}(\tau)-e_{k-1}^{T}(\tau) Q e_{k-1}(\tau)
\end{align*}
$$

Equation (19) can be set in the following form

$$
\mathbb{H}_{k}(\tau)=\left[\begin{array}{c}
\Delta x_{k}(\tau) \tag{27}\\
e_{k-1}(\tau) \\
\Delta d_{k}(\tau)
\end{array}\right]^{T}[\mathrm{X}]\left[\begin{array}{c}
\Delta x_{k}(\tau) \\
e_{k-1}(\tau) \\
\Delta d_{k}(\tau)
\end{array}\right]<0
$$

where

$$
\mathrm{X}=\left[\begin{array}{ccc}
\mathrm{X}_{11} & (*) & (*) \tag{28}\\
\mathrm{X}_{21} & \mathrm{X}_{22} & (*) \\
B_{d \Delta}^{T} P & 0 & -\gamma^{2} I
\end{array}\right]<0
$$

and

$$
\left\{\begin{array}{l}
\mathrm{X}_{11}=\left(A_{\Delta}+B_{u \Delta} G_{1}\right)^{T} P\left(A_{\Delta}+B_{u \Delta} G_{1}\right)+\left(C+D_{u} G_{1}\right)^{T} Q\left(C+D_{u} G_{1}\right) \tag{29}\\
\mathrm{X}_{21}=\left(B_{u \Delta} G_{2}\right)^{T} P+\left(D_{u} G_{2}-I\right)^{T} Q\left(C+D_{u} G_{1}\right) \\
\mathrm{X}_{22}=\left(D_{u} G_{2}-I\right)^{T} Q\left(D_{u} G_{2}-I\right)+I-Q
\end{array}\right.
$$

Let

$$
\begin{aligned}
W & =\left[\begin{array}{cc}
A_{\Delta}+B_{u \Delta} G_{1} & B_{u \Delta} G_{2} \\
0 & 0
\end{array}\right], T=\left[\begin{array}{cc}
0 & 0 \\
C+D_{u} G_{1} & D_{u} G_{2}-I
\end{array}\right], \\
Y & =\left[\begin{array}{cc}
C+D_{u} G_{1} & 0 \\
0 & 0
\end{array}\right], Z=\left[\begin{array}{ll}
0 & I
\end{array}\right], U=\left[\begin{array}{c}
B_{d} \\
0
\end{array}\right] . \\
V & =\left[\begin{array}{ll}
P & 0 \\
0 & 0
\end{array}\right], R=\left[\begin{array}{ll}
Q & 0 \\
0 & Q
\end{array}\right], S=\left[\begin{array}{ll}
0 & 0 \\
0 & Q
\end{array}\right]
\end{aligned}
$$

The inequality (28) becomes in the following expression

$$
\mathrm{X}=\left[\begin{array}{cc}
W^{T} V+V W+T^{T} R T+Y^{T} R Y+Z^{T} Z-S & (*) \tag{29}\\
U^{T} V & -\gamma^{2} I
\end{array}\right]<0
$$

Lemma 1 is used as many times as necessary and (29) can be rewritten by

$$
\mathrm{X}=\left[\begin{array}{ccccc}
-R & (*) & (*) & (*) & (*) \tag{30}\\
T^{T} R & W^{T} V+V W-S & \left({ }^{*}\right) & (*) & (*) \\
0 & U^{T} V & -\gamma^{2} I & (*) & (*) \\
0 & R Y & 0 & -R & (*) \\
0 & Z & 0 & 0 & -I
\end{array}\right]<0
$$

After replacing the variables with their expressions in (30), we get the following LMI

$$
\mathrm{X}=\left[\begin{array}{ccccccc}
-Q & \left({ }^{*}\right) \tag{31}\\
\lambda_{1} & \lambda_{2} & \left({ }^{*}\right) \\
\lambda_{3} & \lambda_{4} & -Q & (*) & \left({ }^{*}\right) & \left({ }^{*}\right) & \left({ }^{*}\right) \\
0 & B_{d \Delta}^{T} P & 0 & -\gamma^{2} I & (*) & (*) & \left({ }^{*}\right) \\
0 & \lambda_{5} & 0 & 0 & -Q & (*) & (*) \\
0 & 0 & 0 & 0 & 0 & -Q & \left(^{*}\right) \\
0 & 0 & I & 0 & 0 & 0 & -I
\end{array}\right]<0
$$

where

$$
\left\{\begin{array}{l}
\lambda_{1}=\left(C+D_{u} G_{1}\right)^{T} Q \tag{32}\\
\lambda_{2}=\left(A_{\Delta}+B_{u \Delta} G_{1}\right)^{T} P+P\left(A_{\Delta}+B_{u \Delta} G_{1}\right) \\
\lambda_{3}=\left(D_{u} G_{2}-I\right)^{T} Q \\
\lambda_{4}=\left(B_{u \Delta} G_{2}\right)^{T} P \\
\lambda_{5}=Q\left(C+D_{u} G_{1}\right)
\end{array}\right.
$$

Pre-multiply and post-multiply (31), respectively, by $\operatorname{diag}\left\{Q^{-1}, Q^{-1}, P^{-1}, Q^{-1}, I, Q^{-1}, Q^{-1}, I\right\}$ and its transpose. Thus, the LMI becomes

$$
\mathrm{X}=\left[\begin{array}{ccccccc}
-Q^{-1} & \left(^{*}\right) & \left({ }^{*}\right) & \left({ }^{*}\right) & (*) & (*) & (*) \\
\delta_{1} & \delta_{2} & \left(^{*}\right) & \left({ }^{*}\right) & \left({ }^{*}\right) & \left({ }^{*}\right) & (*) \\
\delta_{3} & \delta_{4} & -Q^{-1} & (*) & (*) & (*) & (*) \\
0 & B_{d \Delta}^{T} & 0 & -\gamma^{2} I & (*) & (*) & (*) \\
0 & \delta_{5} & 0 & 0 & -Q^{-1} & (*) & (*) \\
0 & 0 & 0 & 0 & 0 & -Q^{-1} & (*) \\
0 & 0 & I & 0 & 0 & 0 & -I
\end{array}\right]<0(33)
$$

where

$$
\left\{\begin{array}{l}
\delta_{1}=P^{-1}\left(C+D_{u} G_{1}\right)^{T} \tag{34}\\
\delta_{2}=P^{-1}\left(A_{\Delta}+B_{u \Delta} G_{1}\right)^{T}+\left(A_{\Delta}+B_{u \Delta} G_{1}\right) P^{-1} \\
\delta_{3}=Q^{-1}\left(D_{u} G_{2}-I\right)^{T} \\
\delta_{4}=Q^{-1}\left(B_{u \Delta} G_{2}\right)^{T} \\
\delta_{5}=\left(C+D_{u} G_{1}\right) P^{-1}
\end{array}\right.
$$

Let

$$
\left\{\begin{array}{l}
\Pi_{1}=P^{-1} \tag{35}\\
\Pi_{2}=Q^{-1} \\
\Gamma_{1}=G_{1} \Pi_{1} \\
\Gamma_{2}=G_{2} \Pi_{2} \\
\bar{H}_{0}=\left[\begin{array}{lllllll}
0 & H & 0 & 0 & 0 & 0 & 0
\end{array}\right]^{T} \\
\bar{E}_{0}=\left[\begin{array}{lllllll}
0 & E_{A} \Pi_{1}+E_{B u} \Gamma_{1} & E_{B u} \Gamma_{2} & E_{B d} & 0 & 0 & 0
\end{array}\right]^{T}
\end{array}\right.
$$

Let Σ_{0} be the matrix that we consider X for the nominal system.

Now, it suffices to apply theorem 1 and replace the matrix Ψ by $A_{c l}=A_{\Delta}+B_{u \Delta} G_{1}$ and choose $\Pi=\Pi_{1}$.

$$
\begin{align*}
& {\left[\begin{array}{cc}
h \alpha_{2 \Delta} & (*) \\
\alpha_{6 \Delta} & h \alpha_{2 \Delta}
\end{array}\right]<0} \tag{36}\\
& {\left[\begin{array}{cc}
-r \Pi_{1} & (*) \\
-q \Pi_{1}+\Pi_{1} A_{\Delta}^{T}+\Gamma_{1}^{T} B_{u \Delta}^{T} & -r \Pi_{1}
\end{array}\right]<0} \tag{37}\\
& 2 \alpha \Pi_{1}+\Pi_{1} A_{\Delta}^{T}+A_{\Delta} \Pi_{1}+\Gamma_{1}^{T} B_{u \Delta}^{T}+B_{u \Delta} \Gamma_{1}<0 \tag{38}
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
\alpha_{2 \Delta}=\Pi_{1} A_{\Delta}^{T}+A_{\Delta} \Pi_{1}+\Gamma_{1}^{T} B_{u \Delta}^{T}+B_{u \Delta} \Gamma_{1} \tag{39}\\
\alpha_{6 \Delta}=\Pi_{1} A_{\Delta}^{T}-A_{\Delta} \Pi_{1}+\Gamma_{1}^{T} B_{u \Delta}^{T}-B_{u \Delta} \Gamma_{1}
\end{array}\right.
$$

Let

$$
\left\{\begin{array}{l}
\Sigma_{1}=\left[\begin{array}{cc}
h \alpha_{2} & (*) \\
\alpha_{6} & h \alpha_{2}
\end{array}\right] \tag{40}\\
\bar{H}_{1}=\left[\begin{array}{cc}
h H & H \\
-H & h H
\end{array}\right] \\
\bar{E}_{1}=\operatorname{diag}\left(E_{A} \Pi_{1}+E_{B u} \Gamma_{1}^{T}, E_{A} \Pi_{1}+E_{B u} \Gamma_{1}^{T}\right)
\end{array}\right.
$$

$$
\begin{align*}
& \left\{\begin{array}{l}
\Sigma_{2}=\left[\begin{array}{cc}
-r \Pi_{1} & (*) \\
-q \Pi_{1}+\Pi_{1} A^{T}+\Gamma_{1}^{T} B_{u}^{T} & -r \Pi_{1}
\end{array}\right] \\
\bar{H}_{2}=\left[\begin{array}{c}
H \\
0
\end{array}\right] \\
\bar{E}_{2}=\left[\begin{array}{ll}
0 & E_{A} \Pi_{1}+E_{B u} \Gamma_{1}^{T}
\end{array}\right]
\end{array}\right. \tag{41}\\
& \left\{\begin{array}{l}
\Sigma_{3}=2 \alpha \Pi_{1}+\Pi_{1} A^{T}+A \Pi_{1}+\Gamma_{1}^{T} B_{u}^{T}+B_{u} \Gamma_{1} \\
\bar{H}_{3}=H \\
\bar{E}_{3}=E_{A} \Pi_{1}+E_{B u} \Gamma_{1}^{T}
\end{array}\right. \tag{42}
\end{align*}
$$

Applying Lemma 1 and Lemma 2, inequalities (33, 36-38) can be given in the form

$$
\left[\begin{array}{ccc}
\Sigma_{x} & (*) & (*) \tag{43}\\
\bar{H}_{x}^{T} & -\varepsilon^{-1} I & (*) \\
\bar{E}_{x} & 0 & -\varepsilon I
\end{array}\right]<0
$$

where index $x=0,1,2,3$.
Equation (43) will be pre-multiplying and post-multiplying, respectively, by $\operatorname{diag}\{I, \varepsilon I, I\}$ and its transpose. Therefore, the LMI becomes

$$
\left[\begin{array}{ccc}
\Sigma_{x} & (*) & (*) \tag{44}\\
\varepsilon \bar{H}_{x}^{T} & -\varepsilon I & (*) \\
\bar{E}_{x} & 0 & -\varepsilon I
\end{array}\right]<0
$$

After replacing and rearrange correspondent's terms, we get LMI (20-23). This completes the proof.

IV. EXAMPLE

In this section, we give an example to demonstrate the effectiveness of the proposed approach. Consider the following nominal linear system:

$$
\left\{\begin{array}{l}
\dot{x}(t)=\left[\begin{array}{cc}
-2 & 3 \\
4 & -5
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
2
\end{array}\right] u(t)+\left[\begin{array}{l}
0.2 \\
0.2
\end{array}\right] d(t) \tag{45}\\
y(t)=\left[\begin{array}{ll}
4 & 0
\end{array}\right] x(t)+u(t)
\end{array}\right.
$$

The uncertain matrices are described by:

$$
\begin{equation*}
F(t)=\operatorname{diag}(1-\exp (-t), \sin (2 t)) \tag{46}
\end{equation*}
$$

$H=\left[\begin{array}{cc}0 & 0 \\ 1 & 0.1\end{array}\right], E_{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], E_{B u}=\left[\begin{array}{c}0.5 \\ 0\end{array}\right], E_{B d}=\left[\begin{array}{l}0.1 \\ 0.1\end{array}\right]$
The periodic reference trajectory and the external disturbance applied to the system has been defined, respectively, by the following functions:

$$
\begin{equation*}
r(t)=\sin \left(\frac{2 \pi}{10} t\right)+0.5 \sin \left(\frac{4 \pi}{10} t\right) \tag{47}
\end{equation*}
$$

$$
\begin{equation*}
d(t)=0.5 \sin \left(\frac{2 \pi}{10} t\right) \tag{48}
\end{equation*}
$$

Thus, subject to constraints D_{z} we can choose $h=2, q=0, r=5$ and $\alpha=1$.

Fig. 1: Simulation results $(r(t) / y(t), e(t), u(t))$ for the nominal system

Fig. 2: Simulation results $(r(t) / y(t), e(t), u(t))$ for the uncertain system
For the nominal system, by using Theorem 2, the gains of 2D controller and parameters of the robust repetitive control are:

$$
\left\{\begin{array}{l}
G_{1}=\left[\begin{array}{ll}
-2.9186 & 2.1421
\end{array}\right], G_{2}=0.2265 \tag{49}\\
G_{\text {rob }}=\left[\begin{array}{ll}
-2.6019 & 2.7694
\end{array}\right], G_{\text {rep }}=0.2928
\end{array}\right.
$$

Simulation results (reference signal/output, tracking error and control input) in Fig. 1 show that the system is stable in closed-loop and enters the steady state in the third period.

For the uncertain system, the gains of 2D controller and parameters of the robust repetitive control are:

$$
\left\{\begin{array}{l}
G_{1}=\left[\begin{array}{ll}
-2.5794 & 1.3433
\end{array}\right], G_{2}=0.1053 \tag{50}\\
G_{r o b}=\left[\begin{array}{ll}
-2.4122 & 1.5013
\end{array}\right], G_{r e p}=0.1177
\end{array}\right.
$$

Simulation results are shown in Fig. 2. It easy to remark that the system is robustly stable for the periodic uncertainties and it enters into the steady state in the seventh period.

V. CONCLUSION

This paper has as objective to study the problem of H-infinity control with D-stability constraint for uncertain continuoustime repetitive systems with external disturbances and design a control law, such that the closed-loop poles are placed within a particular region of the complex plane for all admissible uncertainties. Firstly, an equivalence between a twodimensional control system and a repetitive control scheme such that study of convergence and stability properties have been proved. By analyzing these properties, all of the obtained conditions are formulated in the form of linear matrix inequalities and solutions gives the agreed controller gains. Finally, the performance of the proposed control law was tested and simulated on an example and results are competitive in term of robustness and convergence. Repetitive control is no different from other control laws. It has its advantages, its disadvantages, its problems of robustness and applicability. However, it remains recommended for processes that work periodically or repetitively. Authors intend to continue research on this problem and the extension of obtained results to other class parameter uncertainty is actually under study.

References

[1] B. Zhang, D. Wang, K. Zhou, and Y. Wang, "Linear phase lead compensation repetitive control of a CVCF PWM inverter," IEEE Transactions on Industrial Electronics, vol. 55, pp. 1595-1602, 2008.
[2] X. H. Wu, S. K. Panda, and J. X. Xu, "Design of a plug-in repetitive control scheme for eliminating supply-side current harmonics of threephase PWM boost rectifiers under generalized supply voltage conditions," IEEE Transactions on Power Electronics, vol. 25, pp. 18001810, 2010.
[3] M. Sun, S. S. Ge and I. M. Y. Mareels, "Adaptive repetitive learning control of robotic manipulators without the requirement for initial repositioning," IEEE Transactions on Robotics, vol. 22, no. 3, pp. 563568, 2006.
[4] T. Y. Doh, J. R. Ryoo, and M. J. Chung, "Design of a repetitive controller: an application to the track-following servo system of optical disk drives," IEE Proceedings of Control Theory \& Applications, vol. 153, no. 3, pp. 323-330, 2006.
[5] Y. P. Hsin and R. W. Longman, "Repetitive control to eliminate periodic measurement disturbances Application to disk drives," Advances in the Astronautical Sciences, vol. 114, pp. 135-150, 2003.
[6] K. Kalyanam and T. Tsu-Chin, "Two-period repetitive and adaptive control for repeatable and nonrepeatable runout compensation in disk drive track following," IEEE/ASME Transactions on Mechatronics, vol. 17, pp. 756-766, 2012.
[7] T. Inoue, M. Nakano and S. Iwai, "High accuracy control of servomechanism for repeated contouring," In Proceedings of 10th Annual Symposium on Inceremental Motion Control Systems and Devices, USA, pp. 285-292, 1981.
[8] T. Inoue, M. Nakano and S. Iwai, "High accuracy control of a proton synchroton magnet power supply," In Proceedings of the 8th world congress of International Federation of Automatic Control (IFAC), Japan, pp. 3137-3142, 1981.
[9] M. Wu, Y. Y. Lan and J. H. She, "Design of modified repetitive controller based on two-dimensional hybrid model," Control and Decision, vol. 23, no. 7, pp.751-761, 2008.
[10] M. Wu, Y. H. Lan, J. H. She, and Y. He, "Stability analysis and controller design for repetitive control system based on 2D hybrid model," In Proceedings of the 17th international Federation of Automatic Control World Congress, South Korea, vol. 17, pp. 370-375, 2008.
[11] M. Wu, Y. Lan, and J. She, "A new design method for repetitive control systems based on two-dimensional hybrid model," Acta Automatica Sinica, vol. 34, pp. 1208-1214, 2008.
[12] Y. Lan, M. Wu, J. She, "H-infinity repetitive control of linear systems based on 2D model," International Journal of Computing Science and Mathematics, vol. 2, no. 3, pp. 267-289, 2009.
[13] S. Yuan, M. Wu, B. Xu, and R. Liu, "Design of discrete-time repetitive control system based on 2D model," International Journal of Automation and Computing, pp. 165-170, 2012.
[14] K. Yamada and H. Takenaga, "A design method for simple multiperiod repetitive controllers," International Journal of Innovative Computing, Information and Control, vol. 4, no. 12, pp. 3231-3245, 2008.
[15] K. Yamada, T. Sakanushi, Y. Ando, T. Hagiwara, I. Murakami, H. Takenaga, H. Tanaka and S. Matsuura, "The parameterization of all robust stabilizing simple repetitive controllers," Journal of System Design and Dynamics, vol. 4, no. 3, pp. 457-470, 2010.
[16] T. Sakanushi, K. Yamada, T. Hagiwara, H. Takenaga, M. Kobayashi and S. Matsuura, "The parameterization of all robust stabilizing simple multi-period repetitive controllers," Theoretical and Applied Mechanics Japan, vol. 59, pp. 93-109, 2011.
[17] T. Sakanushi, K. Yamada, Y. Ando, T. M. Nguyen and S. Matsuura, "A design method for simple multi-period repetitive controllers for multiple-input/multiple-output plants," ECTI Trans. on Electrical Eng., Electronics, and Communications, vol. 9, no. 1, pp. 202-211, 2011.
[18] K. Yamada, M. Kobayashi, T. Hagiwara, Y. Ando, I. Murakami and T. Sakanushi, "A design method for two-degree-of-freedom simple repetitive control systems," ICIC Express Letters, vol. 3, no. 3, pp. 787792, 2009.
[19] E. Kreindler and A. Jameson, "Conditions for non negativeness of partitioned matrices," IEEE Trans. Automat. Contr., vol.17, no.10, pp 147-148, 1972.
[20] Wang Y., Xie L. and Souza C., "Robust control of a class of uncertain nonlinear systems," Syst. Control Lett. 19, 139-149, 1992.
[21] M. Chilali and P. Gahinet, " H_{∞} Design with Pole Placement Constraints: an LMI Approach," IEEE Trans. Automat. Contr., pp. 358367, 1996.

