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Abstract—This paper presents a robust iterative learning 

control (ILC) for a class of two dimensional (2D) linear 

systems with parametric uncertainty and considerable 

disturbances. The proposed control law is iteratively updated 

to guarantees the robust stability. Based on H∞ setting, 

sufficient conditions for robust monotonic convergence of the 

proposed scheme are presented in terms of linear matrix 

inequality (LMI). A servo flexible example is presented in the 

end of this paper to demonstrate the effectiveness of the 

proposed learning algorithm. 

 Keywords- uncertain systems iterative learning 

control, robust control, linear matrix inequality, 2D systems, 

H∞ setting and robust stability. 

1 INTRODUCTION 

Iterative processes are a distinct class of two dimensional 

2D systems of both theoretical and practical interest. These 

systems cannot be controlled and studied by direct 

application of existing techniques from standard 1D 

systems theory. The key unique feature of 2D systems is 

that the process dynamics depend on two independent 

variables propagating information in two independent 

directions [1, 2]. The study of the 2D systems is motivated 

by many applications such as repetitive processes [3, 4, 5, 

6], control synthesis and processes theoretic problems and 

iterative learning [7, 8, 9, 10]. 

Iterative learning control uses knowledge processes from 

previous iteration of repeated motion to generate a 

feedforward control law to use on subsequent iterations and 

thereby aims to improve performance from pass to pass.  It 

is clear that iterative learning processes have two 

dimensional 2D structure, where information propagation 

occurs along a given finite time interval (first direction t) 

and from iteration to iteration (second direction k).   

The study and analysis of stability and robust stability of 

two dimensional continuous-discrete systems were 

investigated by Busłowicz, [11, 12, 13, 14], Bistritz [15, 

16] and Xiao [17], the problem of monotonic convergence 

of 2D processes is also studied in [18]. These problems are 

solved based on several stability study approaches like H∞ 

setting [18, 19], the performance weighting function [20] 

and the min-max method using the quadratic performance 

criterion [21]. 

Robust iterative learning control represents an important 

topic for controlling systems with parameters uncertainties.  

The synthesis of this type of control law is based on 

different approaches. The H∞ approach based on resolution 

linear inequality matrix LMI problems offers the possibility 

to designing a new control law robust and effective used to 

improving the robust stability of 2D linear systems with 

considerable uncertainties in the parameters of matrix 

inputs. By using iterative learning controller the monotonic 

convergence and the systems stability are guaranteed and 

achieved after an esteemed number of iterations.  

In this paper, we propose a robust and effective H∞ and 

state feedforward controller design method for 2D state 

space systems with parameters uncertainties. The aim of 

this study is to develop new sufficient condition, based on 

LMI techniques, for robust iterative learning control law 

synthesis and stability analysis of 2D uncertain linear 

systems with disturbances. 

The rest of this paper is organized as follows. The ILC 

problem is defined and the class of 2D uncertain systems is 
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described in section II. In section III, sufficient conditions 

for robust stability and robust monotonic convergence, 

based on H∞ setting with LMI techniques, are developed. A 

simulation results carried out on servo flexible system are 

presented in section IV. Finally, a discussion of the results 

and a conclusion are presented.  

2 PROBLEM SETUP 

The systems considered in this paper are described by two 

dimensional uncertain linear state space models with 

nonzero constant initial error and parametric uncertainty in 

the system: 
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Where ( ) n

kx t R  is the state vector,
 

( ) n

ky t R  is the 

output, ( ) m

ku t R is the control input signal, 

( ) m

kw t R is the disturbance, 
*n nA R  is the constant 

matrix, 
*n mB R  is the gain matrix of control input, 

*m nC R  is the gain matrix of output, 
*n mH R  is the 

gain matrix of disturbance input and ΔA, ΔB and ΔH 

represent admissible uncertainties. k≥0 denotes the number 

of iteration and
 

 0,t T . The boundary condition 

defined by 0(0)x x . 

The uncertainties matrices ΔA, ΔB and ΔH are supposed 

verifying the following assumption: 

   1 1 2 3A B H H F E E E                         (2) 

whereH1, E1, E2 and E3 are known constant matrices of 

compatible dimensions.  F is unknown matrix with constant 

entries and satisfies 

TF F I                        (3) 

Let us consider the reference model defined by a state 

space model: 

( ) ( ) ( )

( ) ( )

d d d

d d

x Ax Bu

y

t t t

t tCx

 





                                             (4) 

Where ( ) n

dx t R  , ( ) m

du t R  and ( ) n

dy t R  

represent respectively the reference state vector, the 

reference control input and the reference output. 

The resetting condition is satisfied at each trial i.e.

(0) 0dx  , where (0)dx  is the initial state of the 

referenced model.  

A class of two dimensional linear uncertain systems with 

parametric uncertainty in the system and nonzero constant 

initial error is studied here. The H∞ norm based on linear 

matrix inequality LMIs techniques is presented, in this 

paper, to design a new iterative algorithm to reduce the 

error from trial to trial and eliminate the uncertainty from 

the system. The monotonic convergence and the robust 

stability of 2D systems are guaranteed by using the 

proposed scheme. Our goal is to design and synthesis a new 

control law based on iterative learning control capable to 

drive the system described by (1) to follow the reference 

model described by (4) with zero error. The errors 

trajectory must decreases from iteration to iteration until 

becomes zero. 

3 ROBUST STABILITY ANALYSIS 

We present in this section, the analysis and synthesis of 

new robust iterative learning control for 2D uncertain linear 

systems with considerable disturbances described by (1). 

Based on the state space model description of the systems 

dynamics, the sufficient conditions which guarantee the 

robust stability of the system and the robust monotonic 

convergence is developed in this section in terms of the 

feasibility of LMIs. 

For linear iterative processes of the form considered in 
the system (1), the general robust iterative learning control 
is described by the following structure: 
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The learning rules  1,kv t and  2,kv t  represent 

respectively the robust control and the iterative learning 

control that is iteratively updated, where robK  and PK  

represent the learning gains matrix and 2,0 0v  . 

We define the tracking error model as follows: 
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After substituting (1) into (4) and integrating the control 

law (5), the output error becomes: 

   k ky tte Ce                                                    (7) 

Let consider the following learning state variable: 

1 1

0 0

t t

k k kx dt x dt                                                (8) 

With the help of the equality (1) and integrating the control 

law (5), we develop the new state variable described by the 

following expression: 

     1 1 1 1k k k kA A B B wu H H         
      

(9) 

Proof: 
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The error, at the iteration number k+1, is defined as 

follows: 
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Proof: 

From the equalities (7) and (8): 

1 1k k k key ey Ce Ce   
 

 1k kC x x  
 

1kC   
 

Replacing 1k 
  by their expression in the next equality, we 

get the equality (10). 

From the equalities (9) and (10), we considered the new 2D 

uncertain linear system described by the following state 

representation: 
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Where: 

 
0 0B  , 

11B H , 
0C CA  , D CB , 

0D I , 

11D CH  , 
11B H   ,

0C C A    , D C B    and 

11D C H    . 

Based on (2) the induced uncertainties in the representation 

(11) verify the following condition: 

 11 1

1 2 3

0 11 2

A B B H
F E E E

C D D H

     
   

                     

(12) 

Where 
2 1H CH   

It is clear that the 2D system dynamics represented in (11) 

are affected by disturbances and uncertainties. The 

principal goal in this approach is the design of a robust gain 



Krob and a P type iterative learning gain KP. These gains 

guarantee the system stability and the monotonic 

convergence while satisfying the H∞ constraint. 

To show stability of systems described by (11), we will 

require a Lyapunov function interpretation where the 

variable function is taken to be: 

         1 1 1 1 2 1, T T

k k k kt tV k t P ey P teyt     
         

(13) 

With 1 0P   and 2 0P  .  

It is now routine to conclude that stability along the pass 

holds if ( , ) 0V k t  . 

Definition 1: The 2D linear iterative system defined in (11) 

is said to have H  disturbance norm bound 0   if the 

robust stability is guaranteed along the pass and the induced 

norm between the output and the disturbance input is 

bounded by . 

Theorem 1: Suppose that a robust control law described by 

(5) is applied to a 2D linear iterative system of the form 

(11), with uncertainties form modeled by (3) and (12). 

Then, the resulting system is stable along the pass for all 

tolerable uncertainties and has H norm bound 0   if 

there exist matrices 1 0w  , 2 0w  , N1 and a scalar 

0   such that the LMI presented in (14) holds: 
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Where: 

11 2 2 23 Tw H H     

21 1 1 1 23T T T T T Tw A C N B C H H      

22 1 1 1 1 1 13T T T Tw A Aw N B BN H H       

1 1 2 1E w E N    

If (14) holds, the robust control law Krob is given by 
1

1 1N w
and the iterative control law KP are given directly 

from the resolution of the LMI. 

Proof: introduced the associated Hamiltonian as: 
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And it is simple to show that H∞ disturbance attenuation is 

equivalent to: 

 , 0k t   

We can write: 
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Where: 

       1 1k k k k

T

ey et t t ty      


 

1 1 2 2 1 2 2

2

1 2 2 2 2

ˆ ˆ ˆ ˆ ˆˆ ˆ

ˆˆ ˆ ˆ ˆ

T T T T T

T T T

A P PA A SA L L M M R PB A SB

B P B SA I B SB

      
   

        

(17) 

And 

4

3

2

0 0

0 0

0 0

P

S P

P

 
 


 
  

2

11 11

0

ˆ 0B

D D

 
 


 
   

11 11

1
ˆ 0

0

B B

B

  
 


 
  

 

1 0 0

0 0 0

0 0 0

P

P

 
 


 
  

2

0 0 0

0 0

0 0

R P

I

 
 


 
  

 

     
2

0 0 0

0 0 0

ˆ 0 0 0

K rob P

A

C C D D D D D K

 
 

  
        

 

     0

1

A K

ˆ 0 0 0

0 0 0

rob PA B B B B B K

A

       
 

  
 
 

 

 0 0L I  0 0M I  

Applying a three successive modified Schur lemma to the 

equality (17) followed by replacing the variables by theirs 



appropriates expressions in the result then pre and post 

multiply the result by 

 1 1 1 1 1

4 3 2 1 2, , , , , , , ,T diag P P P P P I I I I      to 

eliminate the bilinearity. 

Then setting 
1

1 1 ,robN K P 1

1 1 ,w P 1

2 2 ,w P 

1

3 3 ,w P  1

4 4w P  in the result. Finally, noting that the 

result doesn’t depend to 3w and 4w  leads to:  
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 Where:
1 1 0 1 ,T T Tw C N D  

2 1 1 1 1,T T Tw A Aw N B BN      
3 1 0 1 ,T T Tw C N D    

4 1 1 1 1

T T Tw A Aw N B BN        

The second term in the above inequality can be written as: 

T T THFE E F H                     (19) 
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 , , , , , ,F diag F F F F F F F  

 1 1 2 1 2 30, ,0, , ,0,0PE diag E w E N E K E   

Lemma 1: Let Ʃ1 and Ʃ2 be real matrices of appropriate 

dimensions. Then for any matrix F satisfying F
T
F ≤ I and a 

scalar ε ˃ 0 the following inequality holds [22]: 

1

1 2 2 1 1 1 2 2

T T T T TF F           
     

(20) 

An obvious application of lemma 1 followed by application 

of the Schur complement lemma and replacing the 

variables by theirs expression yields (14) and the proof is 

complete. 

 

4 SIMULATION EXAMPLE 

To prove the efficiency of our RILC approach we use 
the mechanical example represented by a train consisting of 
a four masses M1, M2, M3 and M4 mutually connected by a 
spring of stiffness ki and braked by a dynamic friction 
coefficient ci [23].

 

Fig. 1. System masses spring. 
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This process is defined by the state space model described 

in the equality (1). 

The state variable x is defined as follows: 
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The desired input (u represented by u) and the disturbance 
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 1 1 1 1 1 0 0 0 0E k c k c   ,  
2 1E    ,

3 1E  

and F  .  

The simulation results are obtained for the initial state 

vector zero. The feasible solution of the LMI (14) is given 

by 0.2071  , 

 -0.2269  -0.0488  0.3324  0.2308  -0.0664  -0.1117  -0.0391  -0.0655robK 

and 0.4071PK   

Figure 2 and figure 4 show desired output trajectory (yd) 

and the output trajectory of the uncertain system (y) at the 

first iteration and at the last iteration, respectively. Figure 3 

and figure 5 represents the errors trajectory of the uncertain 

at the first iteration and at the last iteration, respectively. 

Figure 6 shows the simulation results of proposed scheme 

to the uncertain system: outputs errors norm 
2

( , )e t k  and 

maximum outputs errors norm ( , )e t k  versus iteration k. 

 

Fig.2. desired output trajectory (yd) and the output trajectory of the 

uncertain system (y)  at the first iteration. 

 

Fig.3. Error trajectory of the uncertain system at the first iteration. 

 

 

Fig.4. Desired output trajectory (yd) and the output trajectory of the 

uncertain system (y) and at the last iteration. 
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Fig.5. Error trajectory of the uncertain system at the iteration number 300. 

 

Fig.6. Simulation results of proposed scheme to the uncertain system: 

outputs errors norm 
2

( , )e t k  and maximum outputs errors norm 

( , )e t k  versus iteration k. 

It is very clear that errors of the uncertain system decreases 

from iteration to iteration until becomes zero from the 

iteration number 20. The robust monotonic convergence is 

achieved and the stability of the system is demonstrated. 

The robust iterative learning control is designed well and it 

achieved the objective of the present approach. Our 

approach is fast comparing to others research work, in this 

example we can see that the convergence is achieved in the 

iteration 20. 

5 CONCLUSION 

A robust Monotonic convergence problem for a class of 2D 

linear systems with parametric uncertainty with non-zero 

constant initial error in the system is studied in this paper. 

Robust stability is successfully proved. Based on H infinity 

setting using the LMI techniques, a new robust iterative 

learning control is designed for uncertain linear systems 

with considerable disturbances. The sufficient conditions 

are given by the LMIs which can directly determine the 

learning gains of the proposed control law. 
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