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Abstract — This paper deals with the robust H∞ fuzzy 

control problem for networked control systems, where the 

stochastic behavior of networks, makes it difficult to ensure that 

the data is correctly and fully transmitted to the actuators and 

controllers.  An exponential stabilization method for Takagi-

Sugeno fuzzy systems with uncertainty, external disturbances 

and time-varying delay is proposed. This last is a continuous 

function belonging to a given bounded interval. The delay-

dependent Lyapunov-Krasovskii functional approach is used 

for the exponential stabilization of time-delay T-S fuzzy systems 

and for the existence of a robust H∞ controller is established in 

terms of LMI. To illustrate the effectiveness of the proposed 

approach some examples are given. 

Keywords-- Networked control system (NCS); Takagi–Sugeno 

(T–S) fuzzy system; time varying-delay; guaranteed cost 

control; Lyapunov-Krasovskii; linear matrix inequality (LMI); 
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I. INTRODUCTION 

Network control systems offer many advantages, 
including ease of installation and maintenance, reduction in 
wiring and costs of a system, and many others, which 
improves reliability, efficiency and productivity in many 
distributed industrial control systems. This explains the very 
large industrial applications of the NCS, ranging from 
automation to large-scale surveillance [1] - [5], [10]. 

The exchange of data between the different parts of the 
network, the actuators, the sensors, and the controllers causes 
disturbances introduced in communication, delays and packet 
losses. These two last can really decrease the performances 
and stability of the system to control [5], [10]. 

Many researchers concentrated on the analysis of the 
stability and design of networked control systems in order to 
solve the weakening of the performance of these systems. [1], 
[2],[3]. Some results about the stability of nonlinear NCS 
were presented in [5], [6].    

On another side, fuzzy models have been recognized as 
being effective and adapted to a certain degree of nonlinear 
dynamic complex systems representation, principally for the 
systems with insufficient and uncertain information, 
according to the fuzzy model Takagi-Sugeno(TS) [7], [8], [9]. 

Since there is an important gap between theory and reality 
and it is difficult to make hypotheses of systems models near 
to reality and while we will work with the networked control 
systems, this brings us to work with uncertain T–S fuzzy 
systems, and so as to minimize disturbances and increase 
system performance, an H∞ fuzzy controller will be proposed 
for uncertain T–S fuzzy systems with time variable delay 
[18]-[21]. And like that we can guarantee a certain robustness 
for the stability of networked control systems. The design of 
the control is made on the base of fuzzy model via the method 

of parallel distributed compensation (PDC). Moreover, there 
is another way to improve performance of the system is to 
guaranteed the speed of convergence to the state by the 
exponential stability. 

Many researchers have studied problem of robust 
exponential stability for time-delay [11]-[13], [22]-[25], but 
few of them have applied the exponential stabilization with 
H∞ fuzzy controller for uncertain T–S fuzzy systems with 
time variable-delay. 

In this paper, we consider the problem of controlling 
systems in a network. For that, we develop a new exponential 
stabilization for uncertain Takagi–Sugeno (T – S) fuzzy 
systems with external disturbance and time-varying delay. 
This last is a continuous function belonging to a given 
bounded interval. 

II. PROBLEM FORMULATION  

Consider a nonlinear time delay system can be represented 
by the T–S fuzzy model as follows: 
Plant Rule i:   
IF 𝜃1(𝑡) is 𝐹𝑖1and 𝜃2(𝑡)is 𝐹𝑖2 …  and 𝜃𝑝(𝑡) is 𝐹𝑖𝑝  THEN    �̇�(𝑡) =
(𝐴𝑖 + ΔAi)𝑥(𝑡) + (𝐴𝑑𝑖 + ΔA𝑑𝑖)𝑥(𝑡 − 𝑑(𝑡)) 

                          +(𝐵𝑖 + Δ𝐵𝑖)𝑢(𝑡) + 𝐷𝑖𝜔(𝑡)  

  𝑧(𝑡) = 𝐶𝑖𝑥(𝑡)                                                   (1) 

  𝑥(𝑡) =  𝜑(𝑡)  𝑡 ∈ [−max{𝑑2}, 0],      
where i = 1, 2, . . . , r is the index number of fuzzy rules, 

 𝑥(𝑡) ∈  ℝ𝑛 , 𝑢(𝑡) ∈  ℝ𝑛, 𝑧(𝑡) ∈  ℝ𝑙𝑎𝑛𝑑 𝜔(𝑡) ∈  ℝ𝑝 denotes 

the state vector, control input, measurement output vector 

and disturbance input vector respectively; the matrices 

𝐴𝑖 , 𝐴𝑑𝑖 , 𝐵𝑖 , 𝐶𝑖,  𝐷𝑖 are of appropriate dimensions; 

ΔAi, ΔAdi, ΔBi  denote the uncertainties in the system. θ1(t), 
θ2(t), . . ., θ¯p(t) are the premise variables, the initial 

condition 𝜑(t) is a differentiable function or constant vector, 

Fig  is a fuzzy set (g = 1, 2,…, p). 𝑑(𝑡) is the time varying 

delay function and satisfies  0 < 𝑑1 ≤ 𝑑(𝑡) ≤  𝑑2 . 
The inferred system is described by 

�̇�(𝑡) = ∑ℎ𝑖(𝜃(𝑡))[

𝑟

𝑖=1

(𝐴𝑖 + ΔAi)𝑥(𝑡) + 

(𝐴𝑑𝑖 + ΔA𝑑𝑖) 𝑥(𝑡 − 𝑑(𝑡))  + (𝐵𝑖 + Δ𝐵𝑖)𝑢(𝑡) + 𝐷𝑖𝜔(𝑡)]       

𝑧(𝑡) =  ∑ℎ𝑖(𝜃(𝑡))[

𝑟

𝑖=1

𝐶𝑖𝑥(𝑡)]                                                             (𝟐) 

            

Where 

ℎ𝑖(𝜃(𝑡)) =   𝜇𝑖(𝜃(𝑡))  ∑ 𝜇𝑖(𝜃(𝑡))

𝑟

𝑖 = 1

⁄  
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𝜇𝑖(𝜃(𝑡)) =  ∏𝐹𝑖𝑗(𝜃𝑗(𝑡))

𝑝

𝑗=1

 

And  𝐹𝑖𝑗(𝜃𝑗(𝑡)) is the grade of membership of 𝜃𝑗(𝑡) in the 

fuzzy set 𝐹𝑖𝑗. In this paper, we assume that: 

𝜇𝑖(𝜃(𝑡))  ≥ 0 

And 

∑ 𝜇𝑖(𝜃(𝑡))

𝑟

𝑖 = 1

 

For all t. Therefore, 

ℎ𝑖(𝜃(𝑡)) ≥ 0,      for i= 1, 2, …, r 

And 

∑ ℎ𝑖(𝜃(𝑡)) = 1

𝑟

𝑖 = 1

. 

     Based on the parallel distributed compensation, the 

following controller rules are employed to construct the 

fuzzy controller. 

Controller Rule i:   

IF 𝜃1(𝑡) is 𝐹𝑖1and 𝜃2(𝑡)is 𝐹𝑖2 …  and 𝜃𝑝(𝑡) is 𝐹𝑖𝑝   THEN 

                   𝑢(𝑡) = 𝐾𝑖𝑥(𝑡),          𝑖 = 1, 2,… , 𝑟                 (3) 
For simplicity, the following notations will be used: 

�̅�(𝑡) = ∑∑ℎ𝑖ℎ𝑗�̅�𝑖𝑗

𝑟

𝑗=1

𝑟

𝑖=1

,   

�̅�𝑖𝑗 = (𝐴𝑖 + ΔAi) + (𝐵𝑖 + ΔBi)𝐾𝑗        

By using these notations, the closed-loop system of (2) and 

(3) is shown as follows: 

�̇�(𝑡) = �̅�(𝑡)𝑥(𝑡) + (𝐴𝑑𝑖 + ΔAdi)𝑥(𝑡 − 𝑑(𝑡)) + 𝐷𝑖𝜔(𝑡)     (4) 

Definition:  Given α > 0. The zero solution of system (1) is α

exponential stable if there exist a positive number β > 0 

such that every solution x(t, φ) satisfies the following 

condition: 
‖𝑥(𝑡, ∅)‖ ≤ 𝛽𝑒−𝛼𝑡‖∅‖,         ∀𝑡 ≥ 0. 

     We introduce the following technical well-known 

propositions, which will be used in the proof of our results. 

Proposition 1[15]: For any symmetric positive definite 

matrix M > 0, scalar γ > 0 and vector function ω : [0, γ] → 

ℝ𝑛 such that the integrations concerned are well defined, the 

following inequality holds  

(∫ ω(s) ds
γ

0

)

𝑇

𝑀 (∫ ω(s) ds
γ

0

)  ≤ (∫ ω𝑇
γ

0

(𝑠)𝑀ω(s) ds) 

Proposition 2(Cauchy inequality): For any symmetric 

positive definite matrix 𝑀 ∈ ℝ𝑛 × 𝑛  and 𝑥, 𝑦 ∈ ℝ𝑛 , we 

have 
± 2𝑥𝑇𝑦 ≤  𝑥𝑇𝑀 𝑥 + 𝑦𝑇𝑀−1𝑦. 

Proposition 3(Schur Complement lemma): Given constant 

symmetric matrices X, Y, Z with appropriate dimensions 

satisfying X= X T, Y= Y T > 0. Then X+Z T Y - 1Z < 0 if and 

only if  

(𝑋 𝑍𝑇

𝑍 −𝑌
) < 0  or  (

−𝑌 𝑍
𝑍𝑇 𝑋

)  < 0. 

  Proposition 4: The overall closed-loop system is under zero 

initial condition. 

 Lemma: For any real matrices 𝔻, 𝔽, 𝔼 with appropriate 

dimensions, the following inequality holds 

𝔻𝔽𝔼 + 𝔼𝑇𝔽𝑇𝔻𝑇 ≤ 휀−1𝔻𝔻𝑇 + 휀𝔼𝑇𝔼  ; 휀 > 0, ‖𝔽‖ ≤ 1 

   In order to attenuate the external disturbance of the fuzzy 

system, we introduce the H∞ performance index with 𝛾 > 0 

prescribed attenuation level. 

∫ 𝑧𝑇(𝑡)𝑧(𝑡)𝑑𝑡 ≤  𝛾2 ∫ 𝜔𝑇(𝑡)𝜔(𝑡)𝑑𝑡

∞

𝑡0

 

        

∞

𝑡0

 

III. MAIN RESULT 

Let us set  

𝜆 = 𝜆𝑚𝑖𝑛(�̅�), 

Λ =  𝜆𝑚𝑎𝑥(�̅�) + 𝑑1𝜆𝑚𝑎𝑥(�̅�) +
1

2
𝑑2

3 𝜆𝑚𝑎𝑥 +
1

2
(𝑑2 + 𝑑1) 

          × (𝑑2 − 𝑑1)
2𝜆𝑚𝑎𝑥(𝑆̅)  

The solution 𝑥(𝑡, 𝜙) of the system satisfies 

‖𝑥(𝑡, 𝜙) ‖ ≤ √
Λ

𝜆
 𝑒𝛼𝑡‖𝜙‖,           𝑡 ∈ ℝ+ . 

Theorem: If there exist symmetric matrices Q > 0, P > 0,  

T > 0, R > 0, S > 0, and Y > 0, the system (1) is robustly 

exponential stable with H∞ performance index and for  

0 < α < 1. 

The controller parameters can be chosen as 𝐾𝑖 = 𝑌𝑖𝑇
−1, the 

following LMI holds:  

                          Ω = [
Ω11 Ω12

Ω12 Ω22
] < 0.                             (5)            

Where : 

Ωij =

[
 
 
 
 
Ψ11 Ψ12 Ψ13 Ψ14 Ψ15

Ψ12 Ψ22 Ψ23 Ψ24 Ψ25

Ψ13 Ψ23 Ψ33 −𝑇 𝐶𝑇
Ψ14 Ψ24 Ψ34 Ψ44 −𝑇 + 𝐶𝑇
Ψ15 Ψ25 Ψ35 Ψ45 Ψ55 ]

 
 
 
 

;       
𝑖 = 1, 2, … , 𝑟.
𝑗 = 1, 2,… , 𝑟.

 

 Ψ11 =  𝐴𝑖𝑇 + Δ𝐴𝑖𝑇 + 𝑇𝐴𝑖
′ + 𝑇Δ𝐴𝑖

′ + 𝐵𝑖𝑌 + ΔBi𝑌 + 𝑌′𝐵𝑖
′ 

             +𝑌′ΔBi′ + 𝑄 +  2𝛼𝑃 − 𝑒−2𝛼𝑑2𝑅 + 𝐶𝑖′ 𝐶𝑖 

 Ψ12 = 𝐴𝑑𝑖𝑇 + ΔAdi𝑇 + 𝑇𝐴𝑖
′ + 𝑇Δ𝐴𝑖

′ + 𝑌′𝐵𝑖′ + 𝑌′ΔBi
′
+ 𝑒−2𝛼𝑑2𝑅  

 Ψ13 = 𝑇𝐴𝑖
′ + 𝑇Δ𝐴𝑖′ + 𝑌′𝐵𝑖′ + 𝑌′ΔBi′ 

 Ψ14 = 𝑃 − 𝑇 + 𝑇𝐴𝑖′ + 𝑇Δ𝐴𝑖
′
+ 𝑌′𝐵𝑖′ + 𝑌′ΔBi′ 

 Ψ15 = 𝐷𝑇 + 𝑇𝐴𝑖′ + 𝑇Δ𝐴𝑖
′
+ 𝑌′𝐵𝑖′ + 𝑌′ΔBi′ 

 Ψ22 = 𝐴𝑑𝑖𝑇 + ΔAdi𝑇 + 𝑇𝐴𝑑𝑖
′ + 𝑇ΔAdi′ − 𝑒−2𝛼𝑑2𝑅 − 𝑒−2𝛼𝑑2𝑆 

 Ψ23 = 𝑇𝐴𝑑𝑖
′ + 𝑇ΔAdi′ + 𝑒−2𝛼𝑑2𝑆 ;  Ψ24 = −𝑇 + 𝑇𝐴𝑑𝑖

′ + 𝑇ΔAdi′ 
 Ψ25 = 𝐷𝑇 + 𝑇𝐴𝑑𝑖

′ + 𝑇ΔAdi′ ;   Ψ33 = −𝑒−2𝛼𝑑2𝑆 − 𝑒−2𝛼𝑑1𝑄 

 Ψ44 = 𝑑2
2𝑅 + (𝑑2 − 𝑑1)

2𝑆 − 2𝑇 ;   Ψ55 = [𝐷𝑇 + 𝑇𝐷′ 𝑇′
𝑇′ 𝛿2] 

Proof:  

We consider the following Lyapunov- Krasovskii functional  
𝑉(𝑡) = 𝑉1(𝑡) + 𝑉2(𝑡) + 𝑉3(𝑡) + 𝑉4(𝑡) 

𝑉1(𝑡) = 𝑥𝑇(𝑡)�̅�𝑥(𝑡) 

𝑉2(𝑡) = ∫ 𝑒2𝛼(𝑠−𝑡)𝑥𝑇(𝑠)�̅�𝑥(𝑠)𝑑𝑠
𝑡

𝑡−𝑑1

 

                                   (6) 

𝑉3(𝑡) = 𝑑2 ∫ ∫ 𝑒2𝛼(𝜏−𝑡)�̇�𝑇(𝑠)�̅��̇�(𝜏)𝑑𝜏𝑑𝑠

𝑡

𝑡+𝑠

0

−𝑑2

         

𝑉4(𝑡) = (𝑑2 − 𝑑1) ∫ ∫ 𝑒2𝛼(𝜏−𝑡)�̇�𝑇(𝑠)𝑆̅�̇�(𝜏)𝑑𝜏𝑑𝑠

𝑡

𝑡+𝑠

𝑑1

−𝑑2

     

It is easy to check that 
 𝜆 ‖𝑥(𝑡)‖2 ≤ 𝑉(𝑡, 𝑥𝑡) ≤ Λ ‖𝑥𝑡‖

2,    𝑡 ∈ ℝ+ .                    (7) 

The derivative of 𝑉1(𝑡),… , 𝑉4(𝑡) is given by 

�̇�1(𝑡) =  2𝑥𝑇(𝑡)�̅��̇�(𝑡) + 2𝛼𝑥𝑇(𝑡)�̅�𝑥(𝑡) − 2𝛼𝑉1 

�̇�2(𝑡) = 𝑥𝑇(𝑡)�̅�𝑥(𝑡) − 𝑒−2𝛼𝑑1𝑥(𝑡 − 𝑑1)�̅�𝑥(𝑡 − 𝑑1) − 2𝛼𝑉2 

�̇�3(𝑡) = 𝑑2
2�̇�𝑇(𝑡)�̅��̇�(𝑡) − 𝑑2 ∫ 𝑒−2𝛼𝑑2

𝑡

𝑡−𝑑2

�̇�𝑇(𝑠)�̅��̇�(𝑠)𝑑 − 2𝛼𝑉3 

�̇�4(𝑡) = (𝑑2 − 𝑑1)
2�̇�𝑇(𝑡)𝑆̅�̇�(𝑡) − 

                (𝑑2 − 𝑑1)𝑒
−2𝛼𝑑2 ∫ �̇�𝑇(𝑠)𝑆̅�̇�(𝑠)𝑑𝑠

𝑡

𝑡−𝑑2

− 2𝛼𝑉4 

We apply proposition1 and the Leibniz-Newton formula: 

−𝑑2 ∫ �̇�𝑇(𝑠)�̅��̇�(𝑠)𝑑𝑠 ≤ −𝑑(𝑡)∫ �̇�𝑇(𝑠)�̅��̇�(𝑠)𝑑𝑠 
𝑡

𝑡−𝑑(𝑡)

𝑡

𝑡−𝑑2

 

                   ≤ −[∫ �̇�(𝑠)𝑑𝑠
𝑡

𝑡−𝑑(𝑡)
]𝑇�̅�[∫ �̇�(𝑠)𝑑𝑠

𝑡

𝑡−𝑑(𝑡)
] 

     = −[𝑥(𝑡) − 𝑥(𝑡 − 𝑑(𝑡))]𝑇�̅�[𝑥(𝑡) − 𝑥(𝑡 − 𝑑(𝑡))] 
      =  −𝑥𝑇(𝑡)�̅�𝑥(𝑡) + 2𝑥𝑇(𝑡)�̅�𝑥(𝑡 − 𝑑(𝑡)) 

           −𝑥𝑇(𝑡 − 𝑑(𝑡))�̅�𝑥(𝑡 − 𝑑(𝑡)) 

−(𝑑2 − 𝑑1)∫ �̇�𝑇(𝑠)𝑆̅�̇�(𝑠)𝑑𝑠
𝑡−𝑑1

𝑡−𝑑2
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                      ≤ −(𝑑(𝑡) − 𝑑1)∫ �̇�𝑇(𝑠)𝑆̅�̇�(𝑠)𝑑𝑠
𝑡−𝑑1

𝑡−𝑑(𝑡)

   

                     ≤ −[ ∫ �̇�(𝑠)𝑑𝑠

𝑡−𝑑1

𝑡−𝑑(𝑡)

]𝑇𝑆̅[ ∫ �̇�(𝑠)𝑑𝑠

𝑡−𝑑1

𝑡−𝑑(𝑡)

] 

= −[𝑥(𝑡 − 𝑑1) − 𝑥(𝑡 − 𝑑(𝑡))]𝑇𝑆̅[𝑥(𝑡 − 𝑑1) − 𝑥(𝑡 − 𝑑(𝑡))] 

  =  −𝑥𝑇(𝑡 − 𝑑1)𝑆̅𝑥(𝑡 − 𝑑1) + 2𝑥𝑇(𝑡 − 𝑑1)𝑆̅𝑥(𝑡 − 𝑑(𝑡)) −

          𝑥𝑇(𝑡 − 𝑑(𝑡))𝑆̅𝑥(𝑡 − 𝑑(𝑡)) 

Therefore 

�̇�(𝑡, 𝑥(𝑡)) + 2𝛼𝑉(𝑡, 𝑥𝑡) ≤  𝑥𝑇(𝑡)[�̅� − 𝑒−2𝛼𝑑2�̅� +  2𝛼�̅�]𝑥(𝑡) 

+  �̇�𝑇(𝑡)[𝑑2
2�̅� + (𝑑2 − 𝑑1)

2𝑆̅]�̇�(𝑡) +  𝑥𝑇(𝑡 − 𝑑1)[−𝑒−2𝛼𝑑1�̅� −

𝑒−2𝛼𝑑2𝑆̅]𝑥(𝑡 − 𝑑1) +  𝑥𝑇(𝑡 − 𝑑(𝑡))[−𝑒−2𝛼𝑑2�̅� − 𝑒−2𝛼𝑑2𝑆̅]𝑥(𝑡 −

𝑑(𝑡)) 

+  2𝑥𝑇(𝑡)�̅��̇�(𝑡) + 2𝑒−2𝛼𝑑2𝑥𝑇(𝑡)�̅�𝑥(𝑡 − 𝑑(𝑡)) 

 +  2𝑒−2𝛼𝑑2𝑥𝑇(𝑡 − 𝑑1)�̅�𝑥(𝑡 − 𝑑(𝑡))                                  (8) 
By using the following identity relation 

−�̇�(𝑡) + �̅�(𝑡)𝑥(𝑡) + (𝐴𝑑𝑖 + ΔAdi)𝑥(𝑡 − 𝑑(𝑡)) + 𝐷𝑖𝜔(𝑡) = 0 

we obtain: 

  2[𝑥𝑇(𝑡)𝑋 + 𝑥𝑇(𝑡 − 𝑑(𝑡))𝑋 + 𝑥𝑇(𝑡 − 𝑑1)𝑋 + �̇�𝑇(𝑡)𝑋 +

𝜔𝑇(𝑡)𝑋] ×     [−�̇�(𝑡) + �̅�(𝑡)𝑥(𝑡) + (𝐴𝑑𝑖 + ΔAdi)𝑥(𝑡 − 𝑑(𝑡)) +

𝐷𝑖𝜔(𝑡)] = 0                                     (9)                                                                                                 

𝐽𝑘 = ∫ 𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾2𝜔𝑇(𝑡)𝜔(𝑡)𝑑𝑡  

𝑡𝑘+1+𝜏𝑘+1

𝑡𝑘+𝜏𝑘

 

𝐽𝑘

= ∫ (𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾2𝜔𝑇(𝑡)𝜔(𝑡) + �̇�(𝑡))𝑑𝑡   

𝑡𝑘+1+𝜏𝑘+1

𝑡𝑘+𝜏𝑘

−  𝑉(𝑡) |
𝑡𝑘+1 + 𝜏𝑘+1

𝑡𝑘 + 𝜏𝑘𝑡𝑘 + 𝜏𝑘
                                                           (𝟏𝟎) 

And 

𝐽 = lim
𝑁→∞

∑ 𝐽𝑘

𝑁

𝑘=0

 

𝐽 = ∫ 𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾2𝜔𝑇(𝑡)𝜔(𝑡) + �̇�(𝑡)𝑑𝑡

∞

𝑡0

− 𝑉(𝑡) |
∞

𝑡0
 (𝟏𝟏) 

We replace (8) in (10) and we obtain: 
𝐽𝑘 

≤ ∫ [𝐶𝑥(𝑡)]𝑇[𝐶𝑥(𝑡)] − 𝛾2𝜔𝑇(𝑡)𝜔(𝑡) + �̇�(𝑡)𝑑𝑡      

𝑡𝑘+1+𝜏𝑘+1

𝑡𝑘+𝜏𝑘

+  𝑥𝑇(𝑡)[�̅� − 𝑒−2𝛼𝑑2�̅� +  2𝛼�̅�]𝑥(𝑡) 

+  �̇�𝑇(𝑡)[𝑑2
2�̅� + (𝑑2 − 𝑑1)

2𝑆̅]�̇�(𝑡) 

+  𝑥𝑇(𝑡 − 𝑑1)[−𝑒−2𝛼𝑑1�̅� − 𝑒−2𝛼𝑑2𝑆̅]𝑥(𝑡 − 𝑑1) 

+  𝑥𝑇(𝑡 − 𝑑(𝑡))[−𝑒−2𝛼𝑑2�̅� − 𝑒−2𝛼𝑑2𝑆̅]𝑥(𝑡 − 𝑑(𝑡)) 

+  2𝑥𝑇(𝑡)�̅��̇�(𝑡) + 2𝑒−2𝛼𝑑2𝑥𝑇(𝑡)�̅�𝑥(𝑡 − 𝑑(𝑡)) 

+  2𝑒−2𝛼𝑑2𝑥𝑇(𝑡 − 𝑑1)�̅�𝑥(𝑡 − 𝑑(𝑡)) −  𝑉(𝑡) |∞
𝑡0
              (12) 

Adding the zero item of (9) into (8), we have 

�̇�(𝑡, 𝑥𝑡) + 2𝛼𝑉(𝑡, 𝑥𝑡) ≤ 휀𝑇(𝑡)Ω휀(𝑡) 

휀 = [𝑥(𝑡) 𝑥(𝑡 − 𝑑(𝑡)) 𝑥(𝑡 − 𝑑1) �̇�(𝑡) 𝜔(𝑡)]𝑇 

 Ψ11 = 𝑋�̅� + �̅�′𝑋 + �̅� + 2𝛼�̅� − 𝑒−2𝛼𝑑2�̅� + 𝐶𝑇𝐶 

 Ψ12 = 𝑋(𝐴𝑑𝑖 + ΔAdi) + �̅�′𝑋 + 𝑒−2𝛼𝑑2�̅�  

 Ψ13 = �̅�′𝑋  ;  Ψ14 = �̅� − 𝑋 + �̅�′𝑋  ;   Ψ15 = 𝑋𝐷𝑖 + �̅�′𝑋 

 Ψ22 = 𝑋(𝐴𝑑𝑖 + ΔAdi) + (𝐴𝑑𝑖 + ΔAdi)
′𝑋 − 𝑒−2𝛼𝑑2�̅� − 𝑒−2𝛼𝑑2𝑆̅ 

 Ψ23 = (𝐴𝑑𝑖 + ΔAdi)
′𝑋 + 𝑒−2𝛼𝑑2𝑆̅ 

 Ψ24 = −𝑋 + (𝐴𝑑𝑖 + ΔAdi)′𝑋  ;   Ψ25 = 𝑋𝐷𝑖 + (𝐴𝑑𝑖 + ΔAdi)
′𝑋 

 Ψ33 = −𝑒−2𝛼𝑑2𝑆̅ − 𝑒−2𝛼𝑑1�̅�  ;    Ψ34 = −𝑋  ;   Ψ35 = 𝑋𝐷𝑖 

 Ψ44 = 𝑑2
2�̅� + (𝑑2 − 𝑑1)

2𝑆̅ − 2𝑋 

 Ψ45 = 𝑋𝐷𝑖 − 𝑋  ;    Ψ55 = 𝑋𝐷𝑖 + 𝐷𝑖′𝑋 − 𝛾2 

Pre-and Post-multiplying both sides of Ω with  
𝜃 = 𝑑𝑖𝑎𝑔 {𝑇, 𝑇, 𝑇, 𝑇, 𝑇}, 

And make the change of variables such that: 
𝐾 = 𝑌𝑇−1 , 𝑋 = 𝑇−1 , �̅� = 𝑇−1𝑅 𝑇−1, 𝑆̅ = 𝑇−1𝑆 𝑇−1, �̅� =
𝑇−1𝑄 𝑇−1. 

Then we obtain (5). 

we have                        Ω = 𝜃Γ𝜃 
From (12) the following inequality can be shown as: 

𝐽 ≤ lim
𝑁→∞

∑ ∫ Ω𝑑𝑡

𝑡𝑘+1+𝜏𝑘+1

𝑡𝑘+𝜏𝑘

−  𝑉(𝑡) |
𝑡𝑘+1 + 𝜏𝑘+1

𝑡𝑘 + 𝜏𝑘𝑡𝑘 + 𝜏𝑘
 

𝑁

𝑘=0

           (𝟏𝟑)  

Combining (11) and (13), the following result is obtained, 

∫ 𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾2𝜔𝑇(𝑡)𝜔(𝑡) + �̇�(𝑡)𝑑𝑡 

∞

𝑡0

≤ lim
𝑁→∞

∑ ∫ Ω𝑑𝑡

𝑡𝑘+1+𝜏𝑘+1

𝑡𝑘+𝜏𝑘

     

𝑁

𝑘=0

 

It is clear it that 

 𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾2𝜔𝑇(𝑡)𝜔(𝑡) + 𝑉(∞) − 𝑉(𝑡0) ≤ 0 if Ω < 0 for any 

nonzero 휀 (t).  

According to the zero initial condition, we know that the 

 H∞ performance index is satisfied.  

Note that Γ < 0 if and only if Ω < 0.  

Therefore, from condition (5), we obtain 

              �̇�(𝑡, 𝑥𝑡) + 2𝛼𝑉(𝑡, 𝑥𝑡) ≤ 0                           (14) 
Integrating both sides of (14) from 0 to t, we obtain 

𝑉(𝑡, 𝑥𝑡) ≤ 𝑉(0, 𝑥0)𝑒
−2𝛼𝑡 ,     ∀𝑡 ∈  ℝ+ 

Furthermore, taking condition (7) into account, we have 

𝜆‖𝑥(𝑡, 𝜙)‖2 ≤ 𝑉(𝑡, 𝑥𝑡) ≤ 𝑉(0, 𝑥0)𝑒
−2𝛼𝑡 ≤ Λe−2αt‖ϕ‖2, 

Then the solution x(t, ϕ)  of the system satisfy  

‖𝑥(𝑡, 𝜙)‖ ≤ √
Λ

𝜆
𝑒−𝛼𝑡‖𝜙‖,   ∀𝑡 ≥ 0. 

Which implies the closed-loop system is α − robustly 

exponentialy stable.  

 The conditions of the theorem have been obtained and the 

proof is complete. 

IV. SIMULATION 

Consider the following nonlinear system proposed in [10].    
It can be represented by the following fuzzy model:  

Rule 1   𝐼𝑓 𝑥2(𝑡)𝑖𝑠 𝑁11 , 𝑡ℎ𝑒𝑛 

 �̇�(𝑡) = (𝐴1 + ΔA1)𝑥(𝑡) + (𝐴𝑑1 + ΔA𝑑1)𝑥(𝑡 − 𝑑(𝑡))   
                                              +(𝐵1 + Δ𝐵1)𝑢(𝑡) + 𝐷1𝜔(𝑡)  

  𝑧(𝑡) = 𝐶1𝑥(𝑡)                                       
Rule 2   𝐼𝑓 𝑥2(𝑡)𝑖𝑠 𝑁12, 𝑡ℎ𝑒𝑛 
�̇�(𝑡) = (𝐴2 + ΔA2)𝑥(𝑡) + (𝐴𝑑2 + ΔA𝑑2)𝑥(𝑡 − 𝑑(𝑡)) 
                                            +(𝐵2 + Δ𝐵2)𝑢(𝑡) + 𝐷2𝜔(𝑡)  

𝑧(𝑡) = 𝐶2𝑥(𝑡)       

where 

𝑁11(𝑥2(𝑡)) = 1 −
𝑥2

2(𝑡)

2.2
,      𝑁12(𝑥2(𝑡)) = 1 − 𝑁11(𝑥2(𝑡)) 

𝐴1 = [
−0.1125 −0.02

1 0
],     𝐴2 = [

−0.1125 −1.527
1 0

] , 𝐵1 =

𝐵2 = [
1
0
], 𝐶1 = 𝐶2 = [

0.01
0

],  𝐷1 = 𝐷2 = [0 1],      

𝐴𝑑1 = [
−0.0125 −0.005

0 0
], 𝐴𝑑2 = [

−0.0125 −0.23
0 0

] 

ΔA1 = ΔA2=[
−0.1125

0
]  Ϝ (𝑡) [1 0],ΔB1 = ΔB2 = 0 

ΔAd1 = ΔAd2 = 0,Ϝ (𝑡) = sin (𝑡), 𝜔 (𝑡) = 0.1sin (𝑡)𝑒−0.1𝑡 

The interval nondifferentiable time-varying delay [13] is : 

𝑑(𝑡) = {
0.1 + 0.25𝑠𝑖𝑛2𝑡  𝑖𝑓  𝑡 ∈ 𝔗 = Uk≥0[2𝑘𝜋, (2𝑘 + 1)𝜋]

0                                𝑖𝑓             𝑡 ∈ 𝑅+\𝔗                        
 

We have                     0.29 ≤ 𝑑(𝑡) ≤ 0.35 

The membership functions are: 

ℎ1(𝑡) = (1 −
1

1 + exp {−3(𝑥2
0.5

−𝜋
2)}

) ×
1

1 + exp {−3(𝑥2
0.5

+𝜋
2)}

 

ℎ2(𝑡) = 1 − ℎ1(𝑡). 
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The initial value of the system is 𝜑(𝑡) = (0.5 − 1)𝑇 for 𝑡 ∈

[d̅2, 0]. 

The following parameters are obtained by solving the LMI 

When α=0.08 :  K1 = K2 = [−2.5284 − 0.3121]  

When α=0.1:     K1 = K2 = [−2.5301 − 0.3521] 
Thus, the system is 0.1-exponential stabilization and the 

value  √
Λ

𝜆
= 1.4044  so the solution of the closed-loop 

system satisfies     ‖𝑥(𝑡, 𝜙) ‖ ≤ 1.4044𝑒−0.1𝑡‖𝜙‖,      ∀𝑡 ≥ 0. 

Fig.1. State responses of unforced system for 𝛼=0.08. 

Fig.2. State responses of unforced system for 𝛼=0.1. 

   Fig.1 and Fig.2. shows the state  time-response of unforced 

system. It show that the system is stable when the initial 

condition is 𝜑(𝑡) = (0.5 − 1)𝑇 . 

We note that when α = 0.1, the response time is faster when 

α = 0.08 on the other hand the excess is greater than in the 

former case against the second case. Our result is a little 

better than that obtain in [10].  

V. CONCLUSION 

In this paper, we have considered the problem of the systems 

controlled in network. The new exponential stabilization for 

a class of nonlinear systems for uncertain Takagi–Sugeno 

(T–S) fuzzy systems with external disturbance and time-

varying delay problem has been studied. The time delay is a 

continuous function belonging to a given interval, which 

means that the lower and upper bounds for the time-varying 

delay are available. The stability of time-delay T-S fuzzy 

system with a robust H∞ controller established by delay-

dependent Lyapunov-Krasovskii functional approach and 

sufficient conditions for the exponential stabilization of the 

systems are first established in terms of LMI. An example is 

included to illustrate the effectiveness of the approaches 

proposed in this paper. 
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