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Abstract

The Computation of the zeros of the function are of fundamental importance and play a significant roal in the dynamic

solution and it has mention its application in many scientific areas from mathmatics, physics and communication The aim

of this paper is to computation the number of zeros of the solution of the Mittag-Leffler function Eα,β(z) as examples of

Bargmann function with arbitrary order of growth. We find that the Mittag-Leffler function have not only the same type of

zeros. The number of zeros cab be any finite number:1,2,3,..., not necessarily an odd number.
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1 Introduction

The general theory of growth of an analytic function and the density of their zeros, is applied to the Bargmann function.As

example of the Bargmann function it has used the Mittag-Leffler function Eα,β(z) for the arbitrary complex argument Z, and

two parameters α, β ∈ R.The Mittag-Leffler function plays an important role in Mathematica model, its first formulation by the

Swedish Mathematician [3] Magnus Gsta Mittag-Leffler (1846− 1927), The function became a relevant topic, not only from the

pure mathematical point of view, but also from the perspective of its applications.The special function in this case is:

Eα(z) =

∞∑
m=0

zm

Γ(αm+ 1)
, α>0, z ∈ C

And its general form.

Eα,β(z) =

∞∑
m=0

zm

Γ(αm+ β)
. α>0, β, z ∈ C

In this paper we give a whole clarified description for the zeros of the solution of the Mittag-Leffler function Eα,β(z) ,0 < α < 2.

We find that the number of zeros can be any finite number :1,2,..., not necessarily an odd number. The paper is organized

as follows.Section 2 studied the Bargmann analytic representation and their growth of these function. Section 3 introduces

the fundamental aspects of The Mittag-Leffler function and their States as Bragmann function. Section 4 The zeros of the

Mittag-Leffler function as Bragmann function, are considered. Finally, Section 5 outlines the main conclusions
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2 The Bargmann analytic representation and Their

growth.

There are several representation that use analytic function.The

Bargmann representation is the most well-known one.In this

section,we introduce the Bargmann analytic representation in

the complex plane defined by the Glauber coherent state. The

space of these functions is defined as the space of the entire func-

tions with no singularities. The growth of an analytic function

is characterised by its order and type [1], [4], [5],[14], [15], [16].

Let |k〉 be an arbitrary state :

|k〉 =

∞∑
n=0

kn|n〉. (1)

The normalization condition is given below

∞∑
n=0

|kn|2 = 1. (2)

The conjugate of |k〉 is 〈k| can be written as follows:

〈k| =
∞∑
n=0

k∗n〈n| ; |k〉∗ =

∞∑
n=0

k∗n|n〉. (3)

The Bargmann representation ,[2],[6], for the state |k〉 is repre-

sented by :

k(z) = exp(
|z|2

2
)〈z∗|k〉 =

∞∑
n=0

knz
n

√
n!
. (4)

• The Bargmann representation for the number states |n〉

is:

k(z) =
zn√
n!

(5)

• The Bargmann representation for the coherent state |A〉

is:

k(z) = exp(Az − |A|
2

2
) (6)

Which is of order ρ = 1

and type τ = |A|.

•The Bargmann function of the squeezed state|A; r, θ, λ〉 is :

k(z) = (1− |τ |2)1/4 exp[
τ

2
z2 + βz + λ] (7)

τ = − tanh(
1

2
r) exp(−iθ) , β = A(1− |τ |2)1/2

, λ = −1

2
τ∗A2 − 1

2
|A|2. (8)

It has growth with order ρ = 2 and type τ = 1
2 tanh( 1

2r).

• State with the Mittag-Leffler

function as Bargmann function |ρ, τ〉 is:

|ρ, σ〉 =

∞∑
N=0

σ
N
ρ (N !)

1
2

Γ(Nρ + β)
∗ [

∞∑
N=0

σ
2N
ρ (N !)

Γ(Nρ + β)
]
−1
2 |N〉 (9)

when 0 ≤ ρ<2; and also when ρ = 2 and τ < 1
2 , It has growth

with order ρ = 1
α and type τ for any β .

3 The Mittag-Leffler function as Bragmann func-

tion.

In this section it has introduce the Mittag-Leffler function as

Bargmann function as example where the order of growth is

fractional. The zeros of the Mittag-Leffler function are studied.

3.1 The Mittag-Leffler function

The Mittag-Leffler function is named after the great Swedish

mathematician Gosta Magnus Mittag-Leffler (1846-1927). He

has worked on the general theory of functions, studying the

relationship between independent and dependent variables.The

generalization of the Mittag-Lefer function was proposed by

Wiman in his work [10] on zeros of function which is defined by

the series :

Eα(z) =

∞∑
m=0

zm

Γ(αm+ 1)
, α>0, z ∈ C (10)

More generally, the Mittag-Leffler function with two parameters

has the form:

Eα,β(z) =

∞∑
m=0

zm

Γ(αm+ β)
. α>0, β, z ∈ C (11)

Here z is a complex variable and α, β are arbitrary positive

constants. The function Eα,β(z) is an entire function of the

complex variable z.

Kilbas et al. studied the generalized Mittag-Leffler function

with three parameters [7]. This function was also introduced
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by T.R Prabhakar in 1971[13]:

Eγα,β(z) =

∞∑
m=0

zm(γ)m
m!Γ(αm+ β)

, (γ)m =
Γ(m+ γ)

Γ(γ)
, (12)

where α, β andγ are arbitrary positive constants, and (γ)L is

the Pochhammer symbol[13].

In some other applications, a generalized Mittag-Leffler func-

tion has four parameters, the following function was introduced

by Dzherbashian [13], and is defined as follows :

Eγ,ηα,β(z) =

∞∑
m=0

zm(γ)mη
Γ(αm+ β)m!

, (13)

where α, β, γ ∈ C and η ∈ N. When (γ)0 = 1 and (γ)m =

Γ(m+γ)
Γ(γ) .

In the next section we provide details of some special prop-

erties of the Mittag-Leffler function.

3.2 Analytic properties of the Mittag-Lefer function

First of all, we have to mention that for Reα > 0 and arbi-

trary complex parameter β, the Mittag-Lefer function Eα,β(z)

is an entire function of the complex variable z. For particular

values of parameters, the Mittag-Lefer function coincides with

some elementary functions. A description of the most impor-

tant properties of this function can be found in the third volum

of the Bateman project [7],[8],[11],[9],[13]. In this case when us-

ing their series representations for some parameters. It is easy

to see that:

E0,1(z) =
1

1− z
, |z| < 1; (14)

E1,1
α,1(z) = E1

α,1(z) = E1,1(z) =

∞∑
m=0

zm

Γ(m+ 1)
=

∞∑
m=0

zm

m!
= ez

(15)

E1,1
α,β(z) = Eα,β(z) = E1,2(z) =

∞∑
m=0

zm

Γ(m+ 2)
=
ez − 1

z
(16)

E2,1(z) =

∞∑
m=0

zm

Γ(2m+ 1)
=

∞∑
k=0

zm

2m!
= cosh(

√
z) (17)

E2,2(z) =

∞∑
m=0

zm

Γ(2m+ 2)
=
sinh(

√
z)√

z
(18)

And in general we can show some of this function as follows:-

E1,n(z) =

∞∑
m=0

zm

Γ(m+ n)
=

∞∑
m=0

zm

(m+ (n− 1))!

=
1

zn−1

∞∑
m=0

zm+(n−1)

(m+ (n− 1))!

=

∞∑
m=0

1

zn−1
[ez −

n−2∑
m=0

zm

m!
], n = 1, 2, ...

(19)

If α, β > 0 then they takes the formula[11].

ztEα,β+tα(z) = Eα,β(z)−
t−1∑
m=0

zm

Γ(mα+ β)
, t ∈ N. (20)

As example if t = 1 we get:

z1Eα,β+1α(z) = Eα,β(z)− z0

Γ(0α+ β)
= Eα,β(z)− 1

Γ(β)
. (21)

3.3 The Mittag-Leffler states: States with the

Mittag-Leffler function as Bargmann func-

tion

In this section we extend the construction of the states which

has the Bargmann function with a given order ρ ( ρ can be any

values between 0 and 2 , also it can be ρ > 2 but then the

function is not normalizable) and given type σ by choosing the

coefficients CN in:

|ρ, σ〉 =

∞∑
N=0

KN |N〉; KN = LCN ; CN =
σ
N
ρ (N !)

1
2

Γ(Nρ + β)
. (22)

KN = L
σ
N
ρ (N !)

1
2

Γ(Nρ + 1)
, (23)

where L is a normalization constant given by the following:-

L = [

∞∑
N=0

σ
2N
ρ (N !)

[Γ(Nρ + 1)]2
]
−1
2 , (24)

then we can write:

|ρ, σ〉 =

∞∑
N=0

σ
N
ρ (N !)

1
2

Γ(Nρ + β)
∗ [

∞∑
N=0

σ
2N
ρ (N !)

Γ(Nρ + β)
]
−1
2 |N〉 (25)

L is finite when 0 ≤ ρ<2; and also when ρ = 2 and σ < 1
2 . The

Bargmann function of this state LE 1
ρ
(σ

1
ρ z) where E 1

ρ
(σ

1
ρ z) is

the Mittage-Leffer function.
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and we can writ it as follows:-

K(z) =

∞∑
N=0

KNzN (N !)
−1
2 , (26)

inserting Eq(23) in equation Eq(26) we get :

K(z) =

∞∑
N=0

L
σ
N
ρ (N !)

1
2

Γ(Nρ + β)
zN (N !)

−1
2 =

∞∑
N=0

L
(σ

1
ρ z)N

Γ(Nρ + β)

= LE 1
ρ
(σ

1
ρ z). (27)

We confine z ∈ C and consider the zeroes of the function K(z)

in Eq 27, where E 1
ρ
(σ

1
ρ z) is the Mittag-Leffler function when

β = 1. As an example we present extensive numerical calcu-

lation of the function K(z) in the complex plan. We show a

three-dimensional plot of the real and imaginary parts. ρ can

take all values between 0 and 2. We have considered numerical

results are presented in Fig (1), (2). The total numbers of the

zeros in this case can be easily enumerated. In the special case

where ρ = 1 the state Eq (25) is reduced to usual coherent

states and when ρ = 2 the state Eq (25) is reduced to squeezed

states.

4 The Zeros of the Mittag-Leffler function

as Bargmann function

An entire function of fractional order can have infinitely many

zeros. Also there are entire function which have few zero or

no zeroes , (eg..the exponential function [14], [16], [17],[18],

[19], [20],[21]). The Mittag-Leffler function which was given in

Equations (10) and,(11) is an entire function of order 1
α Conse-

quently, Mittag-Leffler function Eα,β(z) might have an infinite

number of zeros with the possible exception when 1
α is an in-

teger. In this case, there may be a finite number of zeros, or

an infinite number of zeros. We can show that with the excep-

tion of α = β = 1 ,the Mittag-Leffler function has an infinite

number of zeros[20].

The Mittag-Leffler function E(1,1)(z) is equal to the expo-

nential function ez and is only the function which has no zeros.

In this section we calculate the zeros of polynomial approxima-

tions to Eα,β(z) using Eq (11) when β = 1 can be 2; 4; 6; .... we

demonstrate this procedure numerically for α increasing from

1.4 < α < 1.99 and where z is real. In Fig (3),(4),and (5) we

plot some curves of Eα,1(z). For example when the α = 1.567,

Eα,1(z) curve crosses the x-axis four times yielding two zeros,

the next larger value of α when α = 1.759, Eα,1(z) has six

zeros, and when α = 1.957,Eα,1(z) has more than ten zeros.

The Mittag-Leffler function Eα,β(z), which is a generaliza-

tion of the exponential and trigonometric functions, arises fre-

quently in problems of fractional calculus and hence, to under-

stand the theory of fractional differential equations, one needs

to understand properties of this function. One property which

is of interest is the nature of its zeros. The main results regard-

ing zeros of Eα,β(z) when α is a real number lying between 1

and 3 may be summarized as follows: When 1 < α < 2, there

is a finite number (possibly zero) of real zeros and an infinity

of complex zeros. When 2 < α ≤ 3, there are a finite number

(possibly zero) of complex zeros and an infinite number of real

zeros. The number of complex zeros goes as log β and the com-

plex zeros are contained in a small region near the origin[17].

Remark : The exponential function E1,1(z) = exp(z) is

the only Mittag-Leffler function which has no zeros. All other

function Eα,β(z) Reα > 0, α 6= 1 have infinitely zeros. For

example, for α, β = 1, has no zeros, but its polynomial approx-

imation,has N zeros:

ez = 1 + z +
z2

2!
+ .....+

zN

N !
=

∞∑
N=0

zN

N !
, (28)

5 Conclusion

In this paper, we stated The Bargmann analytic representation

in the complex plane. We also considered the growth of the

Mittag-Leffler function as Bargmann function, and the para-

metric and analytic properties of the function . We also con-

sidered the zeros of the Mittag-Leffler function when 1 < α < 2.

Furthermore, we considered the Bargmann function of the ze-

ros of the function and we calculated the number of zeros for

any value of α in the area of 0 < α < 2. The number of zeros

can be any finite number.
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Figure 1: The zeros of the function KN (z) in Eq (27),with
N = 20 in (a)for Eα,1(z) when 0 < α < 2, Polynomial approx-
imation have been made, and their zeros may be fictitious.

Figure 2: The zeros of the function KN (z) in Eq (27), with N = 40
for Eα,1(z) in (b) when 0 < α < 2, Polynomial approximation have
been made, and their zeros may be fictitious.

Figure 3: The zeros of the function Eα,1(z) when α = 1.567.

Figure 4: The zeros of the function Eα,1(z) when α = 1.759.

Figure 5: The zeros of the function Eα,1(z) when α = 1.957.
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