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Abstract -In this paper, the study of wind 

energy conversion system based on variable speed 

wind turbine is presented. The conversion chain 

mainly includes a doubly-fed induction generator 

fed by a matrix converter. In this matter, compared 

with a classical configuration it will minimize the 

bulk caused by the storage capacitors and to limit 

the harmonics. 

To get to this objective, the modeling of the energy 

conversion system and the control strategy of the 

matrix converter are developed. 

The simulation results and the performance of the 

control method are presented and discussed. 

Simulation results are given to show the good 

performances of the adopted control strategy 

method. 

 

Keywords: Wind turbine, DFIG, matrix converter, 

LMSE control, Simulation. 

 
1. Introduction 

 

In recent years, the concept of a doubly fed 

induction generator (DFIG), driven by a variable-speed 

wind turbine, equips the most wind energy conversion 

systems [1-3]. As a result, we have been interested in 

the study of a control structure of a variable-speed 

wind turbine converter driving a DFIG. The field 

oriented control has been adopted [4]. Depending on 

the performance of the control, the speed of the 

generator can follow the value predicted by power-

speed characteristic curve of wind turbine for the 

maximum wind energy capture. Furthermore, the stator 

of the driven wind generator is directly connected to 

the grid, while the rotor is connected via conductive 

rings to the output of a matrix converter (MC). Indeed 

the MC is used in our work to replace the two power 

converters necessary for a conventional configuration 

[5, 6]. Compared to its counterpart, the MC does not 

require voluminous and costly energy storage 

elements; it uses a simpler control system than in the 

two levels power conversion chains. 

The rest of this paper is organized as follows: the 

second section is devoted to the modeling of wind 

turbine, doubly fed induction generator and structure of 

the matrix converter. In the third section we have 

developed a method for controlling the inverter, based 

on the comparison of the reference and output  

 

 

 

quantities known as Least Mean Square Errors LMSE 

(LMSE). Finally, we validated this work with 

simulation results. 

 

2. Design and modeling of the conversion chain 

 

The figure 1 watch, essentially, the wind turbine, the 

doubly fed induction generator and the matrix 

converter . 
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Fig. 1. Variable speed wind energy conversion system 

 

 

2.1 Model of  wind turbine  

The mechanical power (Pm) on the rotor shaft extracted 

from the wind turbine can be represented by the 

following expression [7]:  

 

   
 

 
             

    
                                        (1)  

 

With,  ρ: Air density, approximately 1.225Kg / m
3
; R: 

radius of wind generator; Vv: wind speed; Cp: 

aerodynamic coefficient; 

 

The torque produced by the turbine is equal to the ratio 

of the mechanical power and the wind speed: 

  

 Tt = Pm / Vv                                                             (2) 

 

The mechanical coupling between the turbine and the 

generator is normally provided by a gearbox (gearbox) 

whose gear ratio ζ = ωm / wt is chosen to maintain the 

speed of the generator shaft in a speed range desired. 
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By neglecting the transmission losses of the gearbox, 

the torque of the wind turbine aimed at the side of the 

generator can be represented by: 

 

    
  

 
                                                                   (3) 

                                                 

Where Tm is the drive torque acting on the generator 

shaft and Tt is the torque of the turbine shaft returned to 

the generator side. Based on the equation (1), it is 

obvious that a wind turbine generates only a certain 

percentage of power when it is associated with a wind 

turbine. This percentage depends on the power 

coefficient for each wind turbine and can be defined as 

a function of the specific velocity λ given by the 

equation. (4): 

 

  
    

  
                                                                      (4) 

        

When the available wind power exceeds the nominal 

power of the generator, it is necessary to limit the input 

of the wind turbine. This is achieved by controlling the 

pitch angle (θ) for the orientation of the blades.  For 

this, the purpose pitch angle is controlled such as the 

wind turbine should produce as much energy as 

possible and at the generator nominal power.  

If the specific speed (λ) and angle of orientation of the 

blades are given, the aerodynamic power coefficient, 

Cp (λ, θ) can be approximated by: 

 

   λ θ       
   

λ 
    θ        λ          λ       (5)                                                        

 

Where, 

 

   
 

λ 
 

 

λ     θ
 

     

  θ 
                                              (6) 

 

Figure 2 shows the computed relation between the 

power coefficient Cp (λ,θ) and the specific velocity λ 

for different angles θ. Using wind turbine parameters it 

is clear from this figure λ, that there is a value which 

ensures maximum power captured from the wind for 

each pitch angle. [8, 9]. 

Fig. 2. Characteristics         for different wedge angle values 

 

 

 

 

 

 

Fig.3 Power-Speed characteristics 

 

In other words, it is asserted that for each wind speed, 

the machine will rotate so that it captures the maximum 

available power. Based on relationships (4), (5) and 

(6), the Power-Velocity characteristic can be plotted for 

different wind speeds ( Figure 3).   The speeds of 

rotation which provide an extraction of the maximum 

powers are calculated as a function of the optimum 

specific velocity λ, and the stall angle θ. These speeds 

are given in Table 1. 

 

 

For exploiting the characteristic of figure 3. The values 

of the blade orientation angle and the wind speeds are 

stored in a 2-dimensional table which allows the 

prediction of the rotational speed of the generator (see 

Figure4). 

  

Fig. 4. Data table 2-D for the prediction DFIG speed 

 

 

 

 

 

2.2 DFIG modeling 
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The mathematical model of doubly fed induction 

generator, in a referential linked to the rotating field, 

can be given the following form [8]: 
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And the mechanical dynamics of the system is 

governed by the following equation: 

 

      
   

  
              

 

Where, the electromagnetic torque is:

 
)(

2
3 dsqrqsdre iiii
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pT 

 
wm : mechanical speed;  
J:  moment of inertia ; 

k : coefficient of viscous friction. 

 

And, 

rs ww ,    : These are the speed of the rotating field and 

the electric speed of the rotor. 

 

The strategy of control by stator flux oriented along the 

axis d gave us: 

 

    
  
 

        

      
 

 

Ims: fictitious excitation current representing the 

coupling of the stator flux [9]. 

 

   
  

  
 : Constant of the electrical stator time. 

 

In addition, the following relations are obtained 

                                                    

mssds IM .
   

 an    0qs 
  

 

Finally, these equations are schematized by blocks  

( Fig.5) to give a control method of the wind turbine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Structure of the wind turbine flow direction control 

associated with the MC  
 

The matrix converter is characterized by a matrix 

topology of nine switches (matrix [3 × 3]) (FIG. 6). 

Each of the three switching cells carries three switches 

[10]. 

 

 

 

 

 

 

 

 

Fig.6 Block diagram of the matrix converter 

 

3.1 Vector control of the matrix converter by LMSE 

modulation. 

In this work the control is based on the technique of 

modulation of the error difference between the 

measured values and the desired output values (Least 

Mean Square errors LMSE). Two steps are required for 

the LMSE method [11]. 
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4.  Simulation results 

The results of simulation of phase a are presented as 

validation (FIG. 7) in the case of a resistive-inductive 

load R = 20Ω and L = 40mH, an output frequency fo = 

25 and a sequence time ts = 0.0005s. 

 

 

 

Fig.7 Simulation results: Switch states, Outputs voltages and 

current references for phase.  

In all these figures, we have shown that the input and 

output currents are the same form. Moreover the output 

voltage follows their reference correctly. 

Based on the modeling of the wind turbine, the DFIG 

and the MC which is controlled by LMSE method. The 

simulation results show clearly the validity of this 

technique adopted in a wind energy system. 
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