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Abstract—Adaptive feedback controllers based on 
Lyapunov stability theory for chaos control and hybrid 
projective synchronization of the Chen-Lee chaotic system are 
proposed, in this paper. Firstly, the chaos control to a fixed 
equilibrium point is presented. Secondly, the hybrid projective 
synchronization between two identical chaotic systems is 
developed. Finally, we propose a secure communication scheme 
based on the adaptive studied projective synchronization 
property of the Chen-Lee chaotic system. Numerical 
simulations are demonstrated to verify and illustrate, clearly, 
the effectiveness of the proposed control strategy. 
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I.   Introduction 
Chaotic systems have complex dynamical behaviours 

that possess some special features, such as excessive 
sensitivity to initial conditions, broad spectrums of Fourier 
transform, bounded and fractal properties of the motion in 
the phase space, and so on. In fact, since Pecora and Carroll 
[1] showed that it is possible to realize chaos 
synchronization through a simple coupling, synchronization 
in coupled chaotic dynamical systems has attracted 
considerable attention and has been found some potential 
applications in several fields. Ever since, different types of 
synchronization phenomena have been observed and 
investigated in a variety of chaotic systems [2-5]. 

Recently, hybrid projective synchronization was 
proposed. It can be considered as an extension of projective 
synchronization because complete synchronization and anti-
synchronization are both its special cases. It is worthy of 
study because the response signals can be any proportional 
to the drive signals by adjusting the factors and it can be 
used to extend binary digital to variety M-nary digital 
communications for achieving fast communication.  

Motivated by this idea, Xu introduced three types of 
feedback controllers to the drive system to conduct the 
scaling factor onto a desired value, respectively [6-8]. 
Indeed, the proposed approach has certain significance for 
reducing the cost as well as the complexity for transmitting 
confidential data through using the chaotic masking strategy 
[7]. 

The organization of this paper is as follows. In Section 2, 
the Chen-Lee chaotic system is simply introduced and a new 
adaptive feedback controller is developed for controlling it 
to a desired equilibrium point. Then, in Section 3, an 
adaptive scheme for hybrid projective synchronization is 
proposed and numerical illustrations are given to prove the 
occurrence of the hybrid projective synchronization in the 
Chen-Lee chaotic system. Finally, a scheme of secure 
communication based on the adaptive hybrid projective 
synchronization of the Chen-Lee chaotic system is 
presented, in Section 4. 

 

II.   Chaos Control of the Chen-Lee 
Chaotic System 

 

A.   System Description 

Chen-Lee system [9] is a new 3D chaotic system which 
was proposed by Chen and Lee. It takes, in the state space, 
the description form given as follows: 
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where  1 2 3

T
x x x x  is the vector of state 

variables, ,  ,  a b c  are positive constant parameters, and 

0 a b c    to allow the system to generate chaos. 
The system (1) is robust to various small perturbations 

due to its highly symmetric structure, and it is dissipative. 
Its chaotic attractor is shown, in Fig. 1., for 

5 10,  a b   and 3 8. .c   
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Fig. 1. Various views of the Chen-Lee chaotic attractor 
 
B.   Proposed Approach Controlling Chaos of the Chen-Lee 
System 

In this subsection, chaotic system (1) will be controlled 

to its unstable equilibrium point  0 0 0, ,O  via an 

adaptive linear feedback controller which only includes one 
state variable. The controller can be designed as follows: 
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where the feedback parameter gain k  is adapted according 
to the following update law: 
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According to (2) and (3), the controller associated with 
adaptive update law can be chosen by respect to the above 
form: 
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and the controlled chaotic system is, then, considered as: 
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Hence, it comes the following theorem for stabilizing the 

origin  0 0 0, ,O  of the considered chaotic system (5). 

 
Theorem. The controlled chaotic system (5) will globally 
and asymptotically converge to the unstable equilibrium 

point  0 0 0, ,O  under the controller of form (2) with the 

update law (4). 

 
Proof. By introducing a positive and definite candidate 
Lyapunov function defined by: 
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so, its corresponding derivative function will be expressed 
as follows: 
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which yields to: 
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Thus, to simplify the expression of the derivative 

function 1( ),V t  let’s adjust adequately the parameters 

1 1,     and 1  so that: 
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Among several possibilities, let’s consider the following 
one: 
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Then, (8) takes the new form (11): 
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which can be written as follows: 
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Consequently, by choosing the feedback gain k  such 
that: 

2k a                                                                            (14) 

so, it is obvious that the symmetric matrix 1P  is positive 

definite and 1( )V t  is negative semi-definite since 

0 0,  a b   and 0.c   
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where  min 1P  is the smallest eigenvalue of 1,  ( )P x t  

and ( )x t  are both bounded. It follows that 1( )V t  is 

uniformly continuous. Based on Barbalat’s lemma, 

1 0( )V t   as .t   Subsequently, the system (5) 

converges to  0 0 0, ,O  within a shorter time under the 

suitable designed controller with respect to the update law 
(4). 

This completes the proof. 

 
Numerical simulations demonstrate the performance of 

the proposed method for conducting the considered chaotic 

system to one chosen equilibrium point  0 0 0, , .O  The 

initial conditions of the state vector are 

1 20 1 0 2( ) ,  ( )x x   and 3 0 3( ) ,x   the initial 

condition of the adaptive feedback gain is 0 0( ) ,k   and 

the constant coefficient 1k  is set to be 21. 

At the outset, Fig. 2. shows the time responses of the 

state variables 1 2,  x x  and 3x  when controller is switched 

off, relatively to the chaotic system (1). Then, Fig. 3. 
illustrates, clearly, the asymptotic convergence of the three 
above-mentioned state variables for the controlled chaotic 
system (5). It is observed that chaotic behaviour is 
suppressed by means of the single proposed scalar controller 

1 1( ) ( ),u t kx t   such that 
2
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Fig. 2. Dynamics of the state variables of the Chen-Lee 
chaotic system when the adaptive controller is deactivated 
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Fig. 3. State trajectories of the Chen-Lee controlled chaotic 
system  
 

It is relevant to denote that the proposed single scalar 
adaptive control strategy (2) with the adaptive update law 
(3) can be applied to a class of general 3D chaotic system 
expressed by: 
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where 1 2,  a a  and 3a  are three constants. 

 
 

III.   Hybrid Projective 
Synchronization for Chaotic 

Systems 
 
The main aim of this part is to study the projective 

synchronization in coupled chaotic systems, by adopting the 
adaptive feedback idea proposed in the previous section. 
 
A.   Hybrid Projective Chaos Synchronization by Adaptive 
Feedback Control Law 

Considering two dynamical drive and response chaotic 
systems described, respectively, by: 
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and: 
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drive system (18) and the response system (19), 

respectively, (.)f  and (.)g  are 1n  nonlinear 

vectorial functions, and 
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nonlinear control vector to be determined. 
If there exists a nonzero constant matrix 
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then the response system and the drive system are said to be 
in hybrid projective synchronization. In particular, the 
coupled drive-response system achieves complete 

synchronization when all values of coefficients ih  are equal 

to (1) and the two considered chaotic systems are said to be 

in anti-synchronization when all values of coefficients ih  

are equal to (-1).  

B.   Case of Two Coupled Chen-Lee Chaotic Systems 
 
In this stage, we study the hybrid projective 

synchronization of two identical Chen-Lee chaotic systems. 
The response system corresponding to the drive system (1) 
is defined as follows: 
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where  1 2 3

T
u u u u  is the nonlinear control 

vector. System (1) and system (21) are in hybrid projective 
synchronization as long as: 
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where  1 2 3h diag h h h  and 1 2 3,  ,  h h h  are 

different desired scaling factors for hybrid projective 
synchronization. In such a way, the dynamical error system 
between the response system (21) and the drive system (1) 
can be written as follows: 
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The main goal is to design a controller such that the state 
errors fulfil: 
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then the global and asymptotical stability of the error 
dynamical system (24) means that system (1) and system 
(21) are in hybrid projective synchronization. 



Let’s consider the control functions 1 2,  u u  and 3u  in 

the following form: 
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with k  the feedback gain adjusted  according to the 
following update law: 

2
2 1 20 0 0,  ( ) ,  k k e k k                                      (27) 

As a result, for whichever initial conditions, the drive 
system (1) and the response system (21) are globally and 
asymptotically hybrid projective synchronized through the 
proposed nonlinear feedback controllers (26), by respect to 
the update law (27). 

 

IV.   Application for Color Image 
Encryption and Decryption 

 

In this part, the problem of hybrid projective 
synchronization between two identical chaotic Chen-Lee 
systems is applied to a new chaos-based image 
cryptosystem, in order to illustrate the feasibility of the 
theoretical proposed approach. The input of the considered 
cryptosystem is the plain image which will be encrypted.  

Primarily, we form a vector with three layers in the RGB 
format containing the image colors. After that, the chaotic 
signal of the drive transmitter system is added to the image, 
to further enhance the complexity of the considered 
cryptosystem and, in this manner, improving the security of 
the image transmission process. Afterward, the image is 
successfully recovered through the subtraction between the 
encrypted image and the response receiver chaotic signal. At 
last, the three layers are joined in order to form the color 
image, as presented in Fig. 4. 

 

 

   

                 (a)                         (b)                         (c) 

Fig. 4. (a) Original image, (b) Encoded image, (c) Decoded 
image 

 

V.   Conclusion 

 

In this paper, the confident communication problem 
based on the hybrid projective synchronization of chaotic 
systems is studied. The asymptotic convergence of the 
errors between the states of the drive system and the states 
of the response system is proven by means of Lyapunov 
stability theory. The emitted image is modulated into the 
parameter information of the transmitter system and the 
corresponding receiver is designed so that it is able to 
retrieve, secretly, the former image. 

By referring to simulation results, it can be decided that 
the developed theoretical approach is achievable and 
resourceful, from the time when it is successfully exploited 
to privately transmit and recover one chosen color image. 
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