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Abstract—The main purpose of this paper is the design of a 
discrete fixed low order controller with time specifications. This 
controller is synthetized to reach some step performances such as 
settling time and overshoot. The determination of the controller 
parameters leads to resolve a non-convex optimization problem. 
As the resolution of this problem must generate a global solution, 
the use of a global optimization method is suggested. A 
comparative study between Particle Swarm Optimization (PSO), 
Generalized Geometric Programming (GGP) and the gradient 
methods with different initializations is proposed. Simulation 
results are presented to show the efficiency of each proposed 
method. 

Keywords—fixed low order controller; non-convex 
optimization; time response; particle swarm optimization; 
generalized geometric programming 

I.  INTRODUCTION  

The design of a controller that meets specific performances 
has interested many researchers in different fields. Many of 
them focused on the PID controller because of its simple 
structure and robust performance to resolve these problems [1-
3]. At present, the PID controller is used for many applications 
such as, aerospace, renewable energy, medicine, etc. Yet, 
industrial plants are burdened with characteristics such as high 
order, time delays and nonlinearities [4]. Accordingly, tuned 
PID with Particle Swarm Optimization (PSO) has been 
proposed, to solve the problem of parameter estimation for 
nonlinear dynamic rational filters [5]. Also, for the highly 
complex and nonlinear processes, Fuzzy Logic Controllers 
(FLC) have been developed [6]. Additionally, for higher order 
systems an algebraic scheme using model order formulation 
has been proposed to design a PID controller [4]. 
Unfortunately, one of the major drawbacks of these PID 
controllers is that it cannot fulfil the accuracy of the desired 
step performances. 
In order to come over these difficulties, authors in [7-8] 
developed a method for the design of a continuous fixed low 
order controller using non-convex optimization. Solving the 
non-convex optimization problem has interested noted 
 

researchers in different fields with the object to find the global 
minimum [9-11].  
Stochastic search methods such as Particle Swarm 
Optimization (PSO) proposed by Eberhart and Kennedy are 
well known for achieving high efficiency and searching global 
optimal solution in problem space [12-13]. PSO has been 
applied to many control systems [14]. In addition, the 
deterministic method Generalized Geometric Programming 
(GGP) has made its proof in global optimization that mainly 
appeared in engineering design, management and chemical 
process industry [15].   
In this paper, we are going to extend works in [7] for the 
discrete Linear Time Invariant (LTI), Single Input Single 
Output (SISO) plant in order to develop a controller that 
reaches the target time specifications. The characteristic 
polynomial coefficients are defined by the user as shown in 
[16]. A comparative study between the PSO, the GGP and the 
gradient methods with different initializations is established to 
obtain a controller that fits the most with the time 
specifications.  
This paper is organized as follows, in section II, the problem 
statement is presented. In section III, the PSO method is 
introduced. The GGP method is developed in section IV. 
Simulation results are proposed with a comparison between 
the PSO, the GGP and the Gradient methods in section V. The 
last section is devoted to conclude this paper. 

II. PROBLEM STATEMENT 

Let consider the closed loop system in Fig.1 

 
Fig.1. A feedback control system with cascade configuration. 
 
This system is presented by a plant G(z) and a fixed low order 
controller C(z), such as: 

admin
Texte tapé à la machine
Copyright IPCO-2017
ISSN 2356-5608

admin
Texte tapé à la machine
5th International Conference on Control Engineering&Information Technology (CEIT-2017)    
Proceeding of Engineering and Technology –PET
Vol.33 pp. 45-50




1
1 0

1
1 0

...( )
( )

( ) ...

m m
m m

l l
l l

n z n z nN z
G z

D z d z d z d

−
−

−
−

+ + +
= =

+ + +
  , m l≤             (1)              

The fixed low order controller is: 
1

1 0
1

1 0

( )
( )

( )

r r
r r

t t
t

B z b z b z b

z a
C

zA a
z

z

−
−

−
−

+ +…+
+ +…+

= =                                (2) 

For a low order controller 1r t l≤ ≤ − . 
Thus, the closed-loop transfer function is  

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

F z B z N z F z B z N z
T z

A z D z B z N z zδ
= =

+
                  (3)                             

Then the closed-loop equation is given by: 
( ) ( ) ( ) ( ) ( )z A z N z B z N zδ = +                                                 (4)                                                              

where F(z) is considered as: 
1

1 0( )  q q
q qF z f z f z f−

−= + +…+                                           (5)  

F(z) is introduced in order to fix the closed-loop system’s 
gain.                                 
Hence, the characteristic polynomial δ (z) is represented by: 

( ) 1
1 0      n n

n nz z zδ δ δ δ−
−= + +…+ , n=l+t                           (6) 

Once the model and its structure are set, the main purpose is to 
design the controller that matches the desired settling time and 
overshoot. Accordingly, the target model is defined as: 

*
*

( ) ( ) ( )
( )

( )

F z B z N z
T z

zδ
=                                                          (7)                                    

where F(z) is chosen as * (1) 1T = . 

We determine the desired characteristic polynomial( )*  sδ [2] 

[16]. This polynomial allows reaching the required settling 

time and overshooting. After that, * ( )sδ is discretized using 

the zero order holder. Then, we represent the controller 
parameters C (z) with the vector  

0 1 0 1 1... ...r tx b b b a a a−=                                                (8) 

Let the coefficient vectors of ( )zδ and ( )* zδ be respectively: 

0  1  1   n nδ δ δ δ δ… −  =                                             (9)                 

* * * * *
0 1 1  n nδ δ δ δ δ… − 

 
=                                                    (10)         

The closed-loop characteristic polynomial can be expressed as  

( ) ( ) ( ) ( ) ( )  z A z D z B z N z Px qδ = + = +                               (11)                                                             

where  
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The controller parameters result from the minimization 
between δ and δ*. We define the weighted cost function: 

( ) ( ) ( )* *
0          ( )  ( )

T
f z z W zx zδ δ δ δ= − −   

   
             (12)               

Where W  is the weighted matrix [17]. 
By using (11) and (12) we obtain: 

*
0( ) 2 ( )T T Tf x x P WP x q WP xδ   = + −   

 

* *( ) ( )Tq W qδ δ + − −
 

                                                          (13)                  

Then, 0( )f x is minimized with regards to x as follows: 

min
x

0( )f x   

This non-convex problem can be resolved by local approach 
the gradient method or some several global optimization 
techniques. Accordingly, the comparison between the PSO, 
the GGP and the gradient methods is suggested. 

III.  PARTICLE SWARM OPTIMIZATION 

PSO is a heuristic population-based optimization technique. It 
is one of the most used methods because of its robustness in 
solving problems with nonlinearities [18].  
The population is assimilated to a swarm of particles updating 
from iteration to iteration. The particles change their state in 
the search space until they reach the optimal solution. Each 
particle moves in the direction to its previously best (pbest) 
position and the global best (gbest) position in the swarm [18]. 
In addition, the experiences are accelerated by two factors 1c  

and 2c , and two random numbers 1r and 2r  generated between 

[0,1] while the movement is multiplied by an inertia factor w  

varying between min max,w w  . With each population, update 

of the velocity v  of each dimension D is adjusted by the 
combination of particles information to compute the new 
position of particles [13]. 
For the population of size pN and dimensionD , each 

particle’s position is ,1 ,2 ,...i i i i DX X X X =   and the initial 

velocity of each particle iX is ,1 ,2 ,...i i i i DV V V V =   , where 

1,.., pi N=  and 1,..,j D= .  

The PSO algorithm is given as follows [13]: 
1. Set parametersminw , maxw , 1c , 2c , D, r1, r2 and Nmax 

of  PSO. 
2. Initialize population of particles having positions X 

and velocities V. 
3. Set iteration t =1. 

4. Calculate the fitness of the particles ( )t t
i iF f X= and 

find the index of the best particle b . 

5. Select ,t t
i ipbest X i= ∀ and t t

bgbest X=  

6. Update the inertia factor 

max max min  ( ) / maxw w t w w N= − −  

where N max is the maximum number of iterations. 
7. Update the velocity and position of particles 

1
, , 1 1 , ,. . ( )t t t t

i j i j i j i jV wV c r pbest X+ = + −  

2 2 ,. .( );t t
j i jc r gbest X+ −   and i j∀ ∀  



1 1
, , , ;t t t

i j i j i jX X V+ += +   and i j∀ ∀  

8. Evaluate the fitness 1 1( )t t
i iF f X+ +=  and find the 

index of the best particle 1b . 

9. Update pbest of population i∀ , if 1t t
i iF F+ <  then  

1 1t t
i ipbest X+ +=  else 1t t

i ipbest pbest+ =  

10. Update gbest of the population 

If 
1

1t t
b bF F+ <  then 

1

1 1t t
bgbest pbest+ += and set 1b b= else 

1t tgbest gbest+ =  

11. If t<Nmax then 1t t= + and repeat from step 6 else 
go to 12 

12. Print the optimum solution gbest. 

IV.  GENERALIZED GEOMETRIC PROGRAMMING: 

GGP is a deterministic global optimization method based on 
variable transformation. This mathematical transformation is 
required for the convexification of the objective function [10]. 
The mathematical formulation of a GGP problem is expressed 
as follows [19]: 

0

1

min ( )
T

p p
X

p

Z X c z
=

=∑                                                           (14) 

Where  
1 2

01 2 ... , 1,...,p p pn
p nz x x x p T

α α α= =                                           (15)                           

1 2 1( , ,..., , ,..., ),  m m n i i iX x x x x x x x x+= ≤ ≤                          (16) 

0,ix > for 1 i m≤ ≤ and 0ix ≤ ,for 1m i n+ ≤ ≤ , pc ∈ℜ , 

piα ∈ ℜ  for  1 i m≤ ≤ , piα is integer  1m i n+ ≤ ≤ and  ix , ix  

are respectively, lower and upper bounds of continuous 

variables ix . 

Some definitions should be presented before introducing the 
convexification propositions and property. 
Definition 1 [20]: A “monomial” function is a product of 
power terms and it can be given by:  

1

( ) i

n
p
i

i

f X c x
=

= ∏                                                                   (17) 

where c is a real constant and ip can be negative or positive 

power for 1 i n≤ ≤ .      
Definition 2:  A “signomial” function is constituted of a sum 
with products of power terms, where each product with power 
terms is multiplied by a real constant [20]:  

 ,

1 1

( ) i j

nT
p

j i
j i

f X c x
= =

=∑ ∏                                                       (18)   

The constantsjc and powers ,i jp for 1 i n≤ ≤  and1 j T≤ ≤ can 

be positive or negative. 
Definition 3:  The function ( )f X    is called a“ posynomial”, 

when all constants jc for 1 j T≤ ≤  in a signomial function of 

equation
1

1 11

( ) exp( )
nT T

npi
j i j i ii

j ji

f X c x c p y
=

= ==

= =∑ ∑ ∑∏  are 

positive. 
Optimization problems that possess only signomial terms are 
called GGP problems. 
The following propositions allow analyzing the convexity of a 
function. 
Proposition 1 [20]: A twice-differential function 

1

( )
n

pi
i

i

f X c x
=

= ∏ is convex in n
+ℜ for 0c ≥ if 0ip ≤ . 

 Proposition 2 [19]: A twice-differential function 

1

( )
n

pi
i

i

f X c x
=

= ∏ is convex in n
+ℜ for 0c ≤  if 0ip ≥  and 

1

(1 ) 0
n

i
i

p
=

− ≥∑ . 

Property 1 [21]: The function 
1

exp( )
n

i i
i

c p x
=
∑ is convex in 

n
+ℜ for 0c ≥ and ip ∈ℜ .  

Convexification strategy : 

The convexification strategy is based on variable 
transformation that permits to convexify each monomial of the 
signomial depending on their signs [10]. 
Positively signed term (c>0): 
Consider the monomial function  (17) where 0ip > . 

New variable iy  are presented according to exp( )i ix y= , 

1,..,i n= .  

1
1

( ) exp( )
n

npi
i i ii

i

f X c x c p y
=

=

= = ∑∏                                   (19) 

According to property 1, the signomial equation is convex 
relatively to iy . The transformation is called exponential 

transformation. 
Negatively signed terms (c<0): 

Consider the monomial function 
1

( ) ,
n

pi
i

i

f X c x
=

= ∏ where 

0ip > , and 
1

(1 ) 0
n

ii
p

=
− <∑ , new variable iz are presented 

according to 

1

i ix zβ= , 1,2,...,i n=  where 
1

n

ii
pβ

=
=∑ . 

We obtain the equality:
1 1

( )
iPn n

pi
i i

i i

f X c x c zβ

= =

= =∏ ∏            (20)                             

According to proposition 2, the function is convex according 
to iz , as the sum of exponent is equal to 1 and they are all 

positive. We can also convexify ( )f x  by choosing 



1

n

ii
pβ

=
>∑ . This transformation is related to power 

transformation. 

V. SIMULATION RESULTS: 

In this section, Gradient method, PSO and GGP are applied 
for the design of a discrete fixed low order controller. 

The solutions of these methods will be used to evaluate the 
efficiency of each optimization technique. 

A. Example: 

We consider the following continuous system: 

5 4 3 216 72 22

s + 3
(

4 81.6 13.4
)

s s s s s
G s

+ + + +
=

+
                  (21)        

By using a zero order holder we obtain the discrete system: 

( )
4 3 2 06 09

5 4 3 2 05 16

0.02699 0.02163 0.0005379 1.647.10 2.128.10

1.208 0.4225 0.0001046 3.503.10 5.162.10

z z z z
G z

z z z z z

− −

− −
+ − − −

− + + + −
=    (22)                                                                                         

The objective is to design a 3rd order controller with the 
following specifications: 

• Overshoot 1%≤  

• 2% settling time 11s≤  

We proceed with the design as follows: 

Step 1: We use the CRA method to obtain the target model (7) 
[7]. For that, the following parameters are chosen:5.25τ = and 

1 2.4α = . By using the method presented in [7], we obtain the 

target continuous polynomial: 

* 8 7 6 5 4

3 2

( ) 18.63 139.2 562.4 1339

1921 1624 742.4 141.4

s s s s s s

s s s

δ = + + + +

+ + + +
       (23) 

The application of a zero order holder to the continuous 

polynomial * ( )sδ gives rise to the discrete polynomial defined 

by * ( )zδ , whose coefficients are shown in Table I.  

Step 2: The 3rd order controller is 

 
2

2 1 0
3 2

2 1 0

( )
b z b z b

C z
z a z a z a

+ +
=

+ + +
                                               (24)                              

We set the matrix P and the vector q, then we define the 
weighted matrix coefficients  

 

0.3   for  ,  0,..,3   and  

0.025  for  ,  4,..,7  and   

0  for  
ij

w

i j i j

i j i j

i j

=

= =
 = =
 ≠

 

Case 1 Gradient method: 

Using the gradient method in the resolution of (13) gives rise 
to different solutions depending on the initialization. In fact, 
the choice of two different starting points: 

[ ]1 0 0 0 0 0 0x =  and [ ]2 5 1 3 2 1 5x = − − − , leads to two 

different controllers 1( )C z and 2( )C z  : 

2

1 3 2

0.73 0.1071 0.1279
( )

0.302 0.1028

z z
C z

z z z

− − −=
− +

                                   (25)                

2

2 3 2

2.4862 2.630 1.1013
( )

0.3020 0.168 0.0535

z z
C z

z z z

− + −=
− + +

                           (26)    

Fig. 2. Step response of the closed-loop system for different 
controllers 

From Fig. 2 it is shown that, we obtained a closed-loop system 
response with a settling time about 9.11s and without 
overshoot by considering the first controller1( )C z . While, the 

second controller 2( )C z  gave rise to a settling time about 8.9s 

without overshoot. Accordingly, as we are looking for a global 
solution this method is going to be discarded because of its 
local character. 
 
Case 2 comparing PSO and GGP: 

To resolve (13) with the PSO we set: 

• Inertia weight: min 0.4w = , 0.9maxw = , 

[ ]1 2, 0,1r r rand∈ and Nmax=1000. 

• Acceleration factors: 1 2 2c c= =  

• Population size 100pN = with the dimension 1D =  

• Initial velocity : 10% of the initial position 0X  

Hence, we obtain the 3rd order controller: 

3

0.0456 ² 0.1382 0.1176
C (z)=

0.302 ² 0.1021 0.0005
PSO

z z

z z z

− − −
− + −

                         (27) 

The resolution of (13) with the GGP leads to the controller: 

3

-0.1207 ² 0.0489 0.1478
C (z)=

0.3011 ² 0.1041 0.0011
GGP

z z

z z z

− −
− + +

                       (28)     



The characteristic coefficients of both closed-loop systems are 
compared with the target polynomial * ( )zδ  in Table I. It is 

shown that the coefficients are approximatively the same. 

As shown in Fig. 3, the closed-loop system response with the 
PSO and the GGP methods, achieved respectively 10.7s 
without overshoot and 10.9s without overshoot. Accordingly, 
both methods achieve the desired requirements. 

Fig. 4 shows the control signals obtained with the two 
methods. 

We should also note that, the PSO necessitates an execution 
time of 42.48s to converge into the solution, while the GGP 
takes only 0.96 seconds.   

Our objective now is to synthetize a controller with the 
following specifications: 

• Overshoot 1%≤  
• 2% settling time 6s≤  

Let the designed controller be: 

2
2 1 0

3 2
2 1 0

( )
b z b z b

C z
z a z a z a

+ +
=

+ + +
                                                (29) 

The resolution of (13) with the PSO method and the GGP 
leads respectively to the controllers: 

2

3 2

0.4529 0.0213 0.2104
( )   

0.0130 0.0508 0.0108      
PSO

z
C z

z z z

− − −=
− + +

          (30)                       

2

3 2

0.2533z 0.2587z 0.1299     
C (z)=

0.0130 +0.0454z 0.0063   
GGP

z z

− − −
− −

                   (31)   

The coefficients of the closed-loop systems and the 
characteristic polynomial are given in Table II.  

Fig.5 shows that the closed-loop systems achieved the desired 
time specifications with a settling time about 5.57s for the 
PSO method and 5.67s for the GGP method. We also notice 
that the control signals depicted in Fig.6 provide a small 
variation between the PSO method and the GGP method. 
Thus, both of the optimization methods allowed designing 
closed-loop systems close to the target model. 

TABLE I. COEFFICIENTS OF THE TARGET AND CHARCTERISTIC 
POLYNOMIALS 

( )INDEX i  *
iδ   PSOiδ  

GGPiδ   

0 5.556.10-09 2.503.10-10 3.146.10-10 

1 - 9.581.10-07 1.765.10-07 2.83.10-07 

2 8.339.10-05 6.701.10-05 8.338.10-05 

3 - 0.002696 - 0.00268 - 0.002696 

4 0.03766 0.03761 0.03766 

5 -0.2561 - 0.256 - 0.2557 

6 0.8882 0.8882 0.8871 

7 -1.51 -1.51 -1.509 

8 1 1 1 

 

Fig. 3. Step response of the closed-loop system with PSO and 
GGP for the first example 

 

Fig.4. Control signals of PSO and GGP closed-loop systems 
for the first example 

 Fig.5. Step response of the closed-loop system for the second 
example 



TABLE II. COEFFICIENTS OF THE TARGET AND CHARCTERISTIC 
POLYNOMIALS FOR THE SECOND EXAMPLE 

( )INDEX i  *
iδ   PSOiδ  

GGPiδ   

0 1.068.10-28 4.477.10-10 2.764.10-10 

1 - 3.036.10-16 7.249.10-07 4.352.10-07 

2 1.972.10-09 0.0001161 7.255.10-05 

3 - 1.401.10-05 2.911.10-05 - 4.122.10-06 

4 0.002609 0.002554 0.002639 

5 -0.06639 - 0.06633 -0.06639 

6 0.4768 0.4768 0.4768 

7 - 1.221 - 1.221 - 1.221 

8 1 1 1 

 

 

Fig.6. Control signals of PSO and GGP closed-loop systems 
for the second example 

VI.  CONCLUSION AND PROSPECT: 

A comparative study between the PSO and GGP methods for 
the design of a discrete fixed low order controller have been 
presented in this work. The main purpose of these controllers 
is to meet some time specifications such us settling time and 
overshoot. 
Even though, the PSO is a stochastic method, which has the 
advantage of solving non-convex optimization with a simple 
algorithm, it has the disadvantage to be limited by the search 
space and the population size. Therefore, it may not converge 
to the global optimum. It is also a time-consuming technique, 
which can affect the control of real time applications. While 
the GGP method reaches the global solution and then the 
desired specifications in a short time. In prospect, we will 
extend this work to the design of a robust fixed low order 
controller for uncertain parameters systems. 
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