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Abstract—The main purpose of this paper is the design of a

discrete fixed low order controller with time spediications. This
controller is synthetized to reach some step perfarances such as
settling time and overshoot. The determination oftte controller
parameters leads to resolve a non-convex optimizath problem.
As the resolution of this problem must generate algbal solution,
the use of a global optimization method is suggeste A
comparative study between Particle Swarm Optimizatn (PSO),
Generalized Geometric Programming (GGP) and the grdient
methods with different initializations is proposed. Simulation
results are presented to show the efficiency of dagroposed
method.

Keywords—fixed low order controller; non-convex
optimization; time response; particle swarm optimiation;
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I.  INTRODUCTION

The design of a controller that meets specific grenfinces
has interested many researchers in different fiditisny of
them focused on the PID controller because of iitspke
structure and robust performance to resolve thesggms [1-
3]. At present, the PID controller is used for mapplications
such as, aerospace, renewable energy, medicing,Yetc
industrial plants are burdened with characteriigsh as high
order, time delays and nonlinearities [4]. Accoglyn tuned

researchers in different fields with the objecfital the global
minimum [9-11].

Stochastic search methods such as
Optimization (PSO) proposed by Eberhart and Kennaay
well known for achieving high efficiency and seanthglobal
optimal solution in problem space [12-13]. PSO ha&en
applied to many control systems [14]. In additicine
deterministic method Generalized Geometric Programgm
(GGP) has made its proof in global optimizationt thrainly
appeared in engineering design, management andicilem
process industry [15].

In this paper, we are going to extend works in fof] the
discrete Linear Time Invariant (LTI), Single Inp&ingle
Output (SISO) plant in order to develop a controlibat
reaches the target time specifications. The cheniatt
polynomial coefficients are defined by the usershewn in
[16]. A comparative study between the PSO, the GGdPthe
gradient methods with different initializationsastablished to
obtain a controller that fits the most with the d¢im

specifications.
This paper is organized as follows, in sectiorthg problem
statement is presented. In section lll, the PSOhauktis

introduced. The GGP method is developed in sectibn
Simulation results are proposed with a comparisetwéen
the PSO, the GGP and the Gradient methods in se¢tidhe

PID with Particle Swarm Optimization (PSO) has beeri@st section is devoted to conclude this paper.

proposed, to solve the problem of parameter estméebr
nonlinear dynamic rational filters [5]. Also, fohd highly
complex and nonlinear processes, Fuzzy Logic Cbetso
(FLC) have been developed [6]. Additionally, foghér order
systems an algebraic scheme using model order fationi
has been proposed to design a PID controller

Unfortunately, one of the major drawbacks of thdd®
controllers is that it cannot fulfil the accurackthe desired
step performances.

In order to come over these difficulties, authons [V-8]
developed a method for the design of a continuowesi flow
order controller using non-convex optimization. \&ud the
non-convex optimization problem has interestedchote
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PROBLEM STATEMENT
Let consider the closed loop system in Fig.1

R(z) Ulz) Niz) Y(z)
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Fig.1. A feedback control system with cascade cumétion.

This system is presented by a pl&fr)and a fixed low order
controllerC(z), such as:

Particle Swarm
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(2 = N(2) _ MnZ" + Ny i’1*1+...+ R
D(2) d|£ + q—l 7l 4+ %
The fixed low order controller is:
C(Z) - B(Z) - brzr + b—l%_l+“‘+ Q
A)  Z+g 2+ +a
For a low order controller<t <| -1.
Thus, the closed-loop transfer function is

- F@BAINZ _ KyBy Ny
A2+ HI N ¥ o( x
Then the closed-loop equation is given by:
0(2)=AIN 2+ By N)

where F(z) is considered as:

F(2) = 2+ 27+ + §

m< |

F(z) is introduced in order to fix the closed-loop syst®

gain.

Hence, the characteristic polynomda(z) is represented by:

o(2)=0,2"+0,, 27 +...45, ,n=l+t

Once the model and its structure are set, the maipose is to
design the controller that matches the desiretirgetime and

overshoot. Accordingly, the target model is defiasd
(= F@BAN3
3 (2)

whereF(z) is chosen a3 " (1) = 1.

We determine the desired characteristic polynotia [2]

T
@ ()= [8(2)- F@] w[s(3- 52|
WhereW is the weighted matrix [17].

By using (11) and (12) we obtain:

fo(X) = xT[PTWFﬂ )d-2|:( ¢ ) Wﬁr
+@-8)W(a-4)] (13)
Then, fy(x)is minimized with regards to x as follows:
min fy(x)

(12)

@)

®3)

This non-convex problem can be resolved by local approac

the gradient method or some several global optimization

(4) techniques. Accordingly, the comparison between the,PSO
the GGP and the gradient methods is suggested.

(5) [ll. PARTICLE SWARM OPTIMIZATION

PSO is a heuristic population-based optimization technique. It
is one of the most used methods because of its robasimes
solving problems with nonlinearities [18].

(6) The population is assimilated to a swarm of particles updating
from iteration to iteration. The particles change their state in
the search space until they reach the optimal solution. Each
particle moves in the direction to its previously best ¢pbe
position and the global best (gbest) position in the swarm [18]
(7)  In addition, the experiences are accelerated by two facjors

and ¢, , and two random numbergand r, generated between
[0,1] while the movement is multiplied by an inertia facter
varying betweer| W.,, Wy,o |- With each population, update

[16]. This polynomial allows reaching the required settlingof the velocity v of each dimension D is adjusted by the
time and overshooting. After that) (s)is discretized using combination of particles information to compute the new
the zero order holder. Then, we represent the controlldtosition of particles [13].

parameter€ (z)with the vector

x=[bh B .. h @& g.. &

Let the coefficient vectors of(z) and & (z) be respectively:

0= [ 5051...5n—15n:|
2 =[ 5*051...5 n—15 n:l

J(z2)=A2D3+ BNy Px

where
‘', 0 0 d 0 |
n nn 0 d 0
: : : d, 0
n n n.._ : :
—|''m m-1 m-r .
P= O O n: d dl—:t+1
) d,
| 0 0 0 0 0 |
T
q=[0...0dO wd_y q]

Pe R(n+l)*(r+t+1) X € R(r+t+1) ge Rn+1

The controller parameters result from the minimization
betweery andé”. We define the weighted cost function:

(10)

The closed-loop characteristic polynomial can be expressed a 1.

For the population of sizeNjand dimensio®, each
®) particle’s position is X; :[Xi,l X2 Xp ]and the initial
velocity of each particleX; is V, =[Vi’1 Voo Yo } where
® j=1,.N, andj=1,.D.

The PSO algorithm is given as follows [13]:

Set parametems,;, , Wmax - €, &, D, r1, rzandNmax

of PSO.
Initialize population of particles having positioXs
and velocities/.

3. Setiteratiort =1.

4. Calculate the fitness of the particl€s = f(X) and
find the index of the best particle.
5. Selectpbest = X,0 iand gbest = X
6. Update the inertia factor
W = Woay ~ H(Winax = W)/ Nmax
whereN maxis the maximum number of iterations.
7. Update the velocity and position of particles

Vi = Wy + g 5(pbest - X))
+C,.1p.(gbes} - X;); Oi anddj

(11)



t+1 _ st t+1.
X =% Y

8. Evaluate the fitnessF'™ = f(X/*) and find the
index of the best particlb, .
9. Updatepbestof populationCi , if F'** <F' then

i and[j

pbest™ = %' else pbest™ = pbe$
10. Updategbestof the population
If Fy™ <F} then gbest™ = pbegi‘and setb=helse

gbest™ = gbeé
11. If t<Nmaxthent=t+1and repeat from step 6 else

goto 12
12. Print the optimum solutiogbest.

IV. GENERALIZED GEOMETRIC PROGRAMMING

GGP is a deterministic global optimization methabsdd on
variable transformation. This mathematical transiation is
required for the convexification of the objectivmétion [10].
The mathematical formulation of a GGP problem igrezsed
as follows [19]:

To
nr;(mZ(X)—gicpzp (14)
Where
z,= X" %" K", p=1,...7 (15)
X =00, Xnea oo % ) XS XS TX (16)

% >0,for 1<si<mand X <O0.,for m+l<is<n, c,00,

a, 00 for 1si<m, ayisinteger m+1l<i<nand X ,%
are respectively, lower and upper bounds of conotisu
variablesX .

Some definitions should be presented before intioduthe
convexification propositions and property.
Definition 1 [20]: A “monomial function is a product of

powerterms and it can be given by:
n

f(X)=c
]
wherec is a real constant ang can be negative or positive

power forl<i<n.

Definition 2: A “signomial function is constituted of a sum
with products of power terms, where each produth wower
terms is multiplied by a real constant [20]:

T n
f(X)=> ¢

X (17)

(18)

The constants; and power, ; for 1<i<n andl< j<T can

be positive or negative.
Definition 3: The function f (X)

when all constants; for 1< j <T in a signomial function of

is called a‘posynomial’;

n

T
” ¥ => gexpQ." py)are
1= j=1

positive.

Optimization problems that possess only signongeins are
called GGP problems.

The following propositions allow analyzing the cemity of a
function.

Proposition 1[20]: A twice-differential function

T
equationf (X) = Z G
i=1

n
f(X)=c[ | ¥ is convex inOf for ¢=0if p <O0.
1=

Proposition 2[19]: A twice-differential function

n
f(X)= cl_l " is convex inO" for c<0 if p 20 and
=1

(1—Zn:p,)20.
i=1

n
Property 1 [21]: The function cexp(z p X )is convex in
i=1

0% for cz0and p OO .

Convexification strategy :

The convexification strategy is based on variable
transformation that permits to convexify each moizdmof the
signomial depending on their signs [10].

Positively signed term (c>0):

Consider the monomial function (17) whepe>0.

New variable y; are presented according tg =exp(y ),

i=1..n.

f(0) =[] %" = exp(} ., p¥)
1=1

According to property 1, the signomial equationc@nvex
relatively to y,. The transformation is called exponential

transformation.
Negatively signed terms (c<0):

(19)

n
Consider the monomial functionf(X)=c|_| %', where
=1

p, >0, and (1—2?:1[3,)< 0, new variablez are presented
1
i L= E i= = "
according tox, = z7 , i =1,2,...n where 8 zizlpi .
R

n n b
We obtain the equalityf (X) = cl_ll ¥ = cl_l r

According to proposition 2, the function is convascording
toz, as the sum of exponent is equal to 1 and theyakre

(20)

positive. We can also convexifyf(x) by choosing



£>>" p. This transformation is related to power X =[00000( andx, =[-51-32-14, leads to two
=1 .
different controllersC,(z) and C,(2) :

transformation.
V. SIMULATION RESULTS. C(2) = -0.73% - 0.107%- 0.127 (25)
In this section, Gradient method, PSO and GGP ppdieal z°-0.3027 + 0.102&
for the design of a discrete fixed low order coltro )
_ _ C.(2 = -2.486%° + 2.63@- 1.1013 (26)
The solutions of these methods will be used to uatel the 2 2030202+ 0.16&+ 0.053
efficiency of each optimization technique.
. Step R
A. Example: . tep Response
We consider the following continuous system:
;
s+3
G(9) = (21)
s +16s'+ 728+ 22 €+81.6 9 13.4 . °
By using a zero order holder we obtain the discsgttem: %2106
&(2)= 0.02692 + 0.02168 - 0.00053%- 164780z 2.128%0 (22) = 04
2°-1.2087' + 0.4225°+ 0.0001048+ 3503 Dz 51621 _
The objective is to design a“3order controller with the o2 o
following specifications: . ‘ ‘
0 5 10 15 20 25
3 Overshoot< 1% Time (seconds)
o Fig. 2. Step response of the closed-loop systerdiffarent
We proceed with the design as follows: From Fig. 2 it is shown that, we obtained a clokep system

_ response with a settling time about 9.11s and witho
Step 1:We use the CRA method to obtain the target madel ( overshoot by considering the first control2¢z) . While, the
[7]. For that, the following parameters are chogen5.25and . o
. _ ) second controlleC,(2) gave rise to a settling time about 8.9s
ay = 2.4. By using the method presented in [7], we obthen t | ) )
. | ol without overshoot. Accordingly, as we are looking & global
target continuous polynomial: solution this method is going to be discarded bseanf its

5(s)= ¢ +18.63¢ + 139.8 + 562.4+ 1334 3 local character.

+19216% + 16247 + 742.4+ 141.4 Case 2 comparing PSO and GGP:
The application of a zero order holder to the cumdus To resolve (13) with the PSO we set:

polynomial d (s) gives rise to the discrete polynomial defined «  Inertia weightw_. =0.4, w__ =0.9
“'min s max e

byf(z) , whose coefficients are shown in Table I. .1, Orand [0]] andNmax=1000.

. d H
Step 2:The 3% order controller is . Acceleration factorsc, = c, = 2

C(2) = bZZZ TRzt B (24)  Population sizeN, =100with the dimensiornD =1
Z+aZ+az g

: ) + Initial velocity : 10% of the initial positiornX,
We set the matri¥ and the vectoq, then we define the

weighted matrix coefficients Hence, we obtain thé%rder controller:
0.3 fori,j=0,.,3 and=j _ -0.045&z 2 0.1382- 0.117¢
o . Crso(2)=— = (27)
Vvij - 0.025 forl ,J - 4’",7 and :J z>-0.302z 0.102% 0.000
0 fori#j The resolution of (13) with the GGP leads to thetadler:
-0.120% = 0.0482- 0.1478
Case 1 Gradient method: Cocp(2)= (28)

Z2-0.3011z% 0.104%+ 0.001
Using the gradient method in the resolution of (@®es rise

to different solutions depending on the initializat In fact,

the choice of two different starting points:



The characteristic coefficients of both closed-leyptems are 7 -1.51 -151 -1.509
compared with the target polynomial*(2 in Table I. It is 8 1 1 1

shown that the coefficients are approximativelyshme.

As shown in Fig. 3, the closed-loop system respavitie the
PSO and the GGP methods, achieved respectivelys10.7 > Step Response

without overshoot and 10.9s without overshoot. Adowly, ' ' ' '
both methods achieve the desired requirements. ;
Fig. 4 shows the control signals obtained with theo
methods. . 08
We should also note that, the PSO necessitatexeution éoe,
time of 42.48s to converge into the solution, whhe GGP g
takes only 0.96 seconds. 04
Our objective now is to synthetize a controller hwithe 0al —_
following specifications: | = T.pso
====T_GGP
¢ Overshoot<1% T, " e » 2
* 2% settling time< 6s Time (seconds)
Let the designed controller be: Fig. 3. Step response of the closed-loop systeim R&O and
GGP for the first example
+hz+
c(2) = 3b222 hz+ B 129
Z”ta Z2 +3z 3 Step Response

The resolution of (13) with the PSO method and &@P
leads respectively to the controllers:

-0.452¢ - 0.0213- 0.2104

C 2= 30 2
Psold = 5 01302+ 005082+ 0.0108 (30) 2
£
<
-0.25337 - 0.2587z 0.1299
Ceop(2)= (31)

CP 22 -0.01307 +0.0454z 0.0063 |
The coefficients of the closed-loop systems and the :3:222
characteristic polynomial are given in Table II. o : : :

0 5 10 15 20 25
Fig.5 shows that the closed-loop systems achigvedi¢sired Time (seconds)
time specifications with a settling time about %3@r the Fig.4. Control signals of PSO and GGP closed-lopesns
PSO method and 5.67or the GGP method. We also notice for the first example

that the control signals depicted in Fig.6 providesmall

variation between the PSO method and the GGP method

Thus, both of the optimization methods allowed gieisig 12
closed-loop systems close to the target model.

TABLE I. COEFFICIENTS OF THE TARGET AND CHARCTERIST
POLYNOMIALS

Step Response

08

INDEX (i) 3 Beso Occr E
S06-
0 5.556.10° 2.503.10° 3.146.10° £ N
04 -4

1 -9.581.1¢" 1.765.107 2.83.10”7

—_
2 8.339.10"° 6.701.16" 8.338.10" e TS0

====T_GGP
3 - 0.002696 - 0.00268 - 0.002696 0 ' ‘

0 2 4 6 8 10 12
4 0.03766 0.03761 0.03766 ) Time (seconds)
Fig.5. Step response of the closed-loop systerthéosecond

5 -0.2561 - 0.256 - 0.2557 example
6 0.8882 0.8882 0.8871



TABLE Il. COEFFICIENTS OF THE TARGET AND CHARCTERMSC
POLYNOMIALS FOR THE SECOND EXAMPLE

INDEX ( i) 5|* Ipso e
0 1.068.16¢%¢ 4.477.10¢ 2.764.16¢
1 - 3.036.16¢ 7.249.167 4.352.167
2 1.972.16° 0.0001161 7.255.18
3 - 1.401.16¢ 2.911.16%* -4.122.16¢
4 0.002609 0.002554 0.002639
5 -0.06639 - 0.06633 -0.06639
6 0.4768 0.4768 0.4768
7 -1.221 -1.221 -1.221
8 1 1 1
Step Response
12 T T 1
1
08 1
]
% 06
€
<
04 1
02 ====U_PSO
——U_GGP
0 . . il
6 8 10 12

Time (seconds)

Fig.6. Control signals of PSO and GGP closed-lomgpesns
for the second example

VI. CONCLUSION AND PROSPECT

A comparative study between the PSO and GGP metioods
the design of a discrete fixed low order controttave been
presented in this work. The main purpose of thesgrollers
is to meet some time specifications such us sgttime and
overshoot.

Even though, the PSO is a stochastic method, wihéshthe
advantage of solving non-convex optimization witlsiaple
algorithm, it has the disadvantage to be limitedthsy search
space and the population size. Therefore, it mdycooverge
to the global optimum. It is also a time-consumiaghnique,
which can affect the control of real time applioas. While
the GGP method reaches the global solution and then
desired specifications in a short time. In prospeat will
extend this work to the design of a robust fixed lorder
controller for uncertain parameters systems.
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