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Abstract— This paper, deals with an indirect adaptive fuzzy 

control of discrete-time MIMO nonlinear systems with 

parametric variations. The synthesis of the state feedback control 

law is based on the T-S fuzzy models developed by a local 

description of the considered system. In the first step, gradient 

method is used to adjust model parameters locally estimated by 

the fuzzy model. The state feedback control law based on pole 

placement is applied to the nonlinear system in the second step. 

Based on the Lyapunov stability theory, the asymptotic stability 

of the proposed state feedback adaptive fuzzy control method is 

studied. Two links robot manipulator arm is used to illustrate the 

performance of the proposed controller. 

Keywords— Adaptive control, T-S fuzzy system, nonlinear 

systems, discrete-time model, stability analysis 

I. INTRODUCTION 

The control of nonlinear systems has been the subject of 

many research works [4]. Fuzzy systems have been 

successfully applied to many control problems because they 

do not need an accurate mathematical model of the system 

under control [12]. In fact, fuzzy control algorithms are 

introduced based on the T-S fuzzy model [1,2,7,8]. The basic 

idea of this method is to represent the complex nonlinear 

system by linear local models. Then, for each one a state 

feedback control law is calculated. Thereafter, the global 

control law can be obtained either by combining all local 

control laws [2]. This design, called Parallel Distributed 

Compensation PDC, is intuitive and simple.  

In the literature of fuzzy adaptive control, many authors are 

interested in affine continuous systems. They integrate other 

techniques like the sliding mode control to develop an update 

parameters law such as [13]. Some others are based on the 

recursive last square method to propose update laws [14]. 

Wang and Tanaka have discussed the design and the 

stability of discrete single-input single-output fuzzy dynamic 

control systems.   

The main goal of this work, is to propose an indirect 

adaptive algorithm to design stable fuzzy control law for 

discretes non affines nonlinear systems, where a series-

parallel T-S fuzzy model representation has been used. 

The paper is organized as follows: In Section II, the 

description of the Takagi Sugeno fuzzy model is formulated. 

Section III presents the proposed scheme of an indirect 

adaptive fuzzy control. In section IV, the stability conditions 

of the proposed method are discussed. Section V, present a 

numerical example to illustrate the performance of the studied 

approch. The last section contains conclusions and final 

remarks. 

II. TAKAGI-SUGENO FUZZY MODEL 

We consider the discrete-time multi-input multi-output 

(MIMO) nonlinear systems described by following equations: 

 

( 1) ( ( ), ( ))

( ) ( ( ))

x k f x k u k
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                                         (1) 

 

where f and g are two nonlinear functions.   

 1 2( ) ( ) ( )... ( ) ,  u( )n

T n m
x k x k x k x k k     

and ( )
q

y k  are the measurable state vector, the input 

vector and the system output vector, respectively at the 

discrete time k . 

The discrete nonlinear system (1) can be represented by a 

Takagi-Sugeno series-parallel fuzzy dynamic model. It’s 

described by a linear local model for each fuzzy rule [2]. The

th
i rule of the fuzzy model has the following form: 
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Here, ipM is the fuzzy set and r is the number of rules,  

i

n n
A


 i

n m
B


 and i

q n
C


 are the state matrix, the 

input matrix and the output matrix, respectively.
 

1( ), ... ( )pz k z k are known premise variables. The global states 

and outputs of the fuzzy system are given as follows: 

 

( 1) ( ) ( ) ( ) ( )x k A k x k B k u k  
                       (3) 

where 
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where ( ) ( ( ))
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( ( ))ij jz k is the appartenance degree of the membership 

function  to the fuzzy set  i jM  
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
                                   (6) 

The parameter matrices  ,  and i i iA B C  in the local systems (2) 

are in non-canonical form, unlike most adaptive T–S fuzzy 

control literature which deals with special classes of systems 

whose matrices are in a canonical form. Furthermore, while 

from the linear local system models, a global T–S fuzzy 

system model can be constructed [5].  

In our case, we assume that the nonlinear mathematical model 

is unknown with time varying parameters.  

III. STATE FEEDBACK FUZZY CONTROL 

In this section, we will present the adaptive control design 

for the dynamic fuzzy system presented previously. 

A. Fuzzy Control Law 

In the PDC design, each control rule is designed from the 

same rule is given as follows: 

1 1

 

:    

1, 2...
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     u ( ) ( )          

i p ip

i i

i

c

i r
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then k K x k  

                  (7) 

where 
i

K is the state feedback gain of the
th

i local model. 

The global fuzzy controller is presented by: 

1

1

( ( )) ( )

( )

( ( ))

i i

i

r

i
r

i

w z k K x k

u k

w z k







 


       (8) 
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  by substituting (8) into (3) the global control in closed loop 

can be written as: 

1 1

( 1) ( ) ( ) ( ) ( )i i j ji

r r

i j

x k k A x k B k K x k
 

 
 
 
 

                (9) 

, ,,
( 1) ( ) ( )i j i j

r

i j
x k k G x k          (10) 

where 
,

 , 1..      ji j i i
G A B K i j r     (11) 

The fuzzy state feedback control is used to place all closed-

loop eigenvalues of each local model inside the unit circle at 

the appropriate values in order to stabilize the plant. 

B. Indirect Adaptive Fuzzy Control 

The indirect adaptive fuzzy control scheme is illustrated by 

fig1. The gain in the control law given by equation (8) was 

calculated using matrice
i

A and
i

B whose are supposed variable 

during the time. Based on the assumption that the 

approximators are universal, we can replace
i

A and
i

B by their 

estimates iA and iB . 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  Indirect adaptive fuzzy control 

The error between the model and the plant is used to adjust 

on-line the parameters of the fuzzy model so that the error 

converges toward zero. We define the prediction error ( )e k  

( ) ( 1) ( 1)

       = ( ) ( ) ( ) ( ) ( 1)

e k k x k

A k x k B k u k x k

x   

  
                      (12) 

 Adaptation laws are determined based on the gradient 

method to minimize the quadratic criterion ( )J k
  

1
( ) ( ) ( )

2

T
J k e k e k       (13) 

Then, we can deduce the following adaptation algorithm : 

( ) ( ) ( )

( ) ( ) ( )

( 1) ( )

( 1) ( )

T
i i

a i

T
i i

b i

k e k x k

k e k u k

A k A k

B k B k

 

 

  

  

    (14) 

where
a

 and
b

 are positive adjustment constants satisfying 

the stability conditions.  

IV. SABILITY ANALYSIS 

The stability steady of the closed loop nonlinear system will 

be investigated in this section. For the stability analysis, a 

candidate Lyapunov function is proposed. 

A.  Convergence analysis 

To demonstrate the stability of the closed-loop fuzzy 

control system which consists of the fuzzy model and the PDC 

controller, we define the following Lyapunov function: 

1 2( ) ( ) ( )V k V k V k       (15) 

where           1( ) ( )V k x k     (16) 

i
K  

Adjustement mechanism 

( )kx

( )kx

( )u k  
Plant 

Adjustable T-S 

Fuzzy model 

Fuzzy controller 

( )ke  
;i iA B  + 

- 



and to ensure a good estimation quality, it is necessary that 

these estimation errors tend asymptotically to a minimum 

value close to zero. The second term of the Lyapunov function 

is defined as follow:  

2
1 1

( ) ( ) ( ) ( ) ( )
T T
i i i i

r r

i i

V k tr A k A k tr B k B k
 

   
      

      (17) 

where iA and iB are the estimation errors matrices, defined as: 

( ) ( ) ( )  and  ( ) ( ) ( )i ii ii i
A k A k A k B k B k B k    

we denote that  tr Q is the trace of a matrix Q  and
T

Q is her 

transposed. 

To ensure stability for the proposed scheme, the convergence 

conditions are obtained using the following inequalities: 

1 2( ) 0 and ( ) 0 V k V k         (18) 

For the first term, that concerns the dynamic fuzzy system 

expressed by (10), the demonstration of its stability condition 

is as follows: 

1 1 1

, ,

, ,

max

,

,

( ) ( 1) ( ) ( 1) ( )

           ( )

           ( )

     

( ) ( )

( ) 1

( )      ( )1

i j i j

i j i j
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
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1( ) 0V k   if     
max( ) 1 0ii

r

i
k          (20) 

where
maxi

 is the maximum eigenvalues of the estimates of 

the matrix
,i j

G for , 1..i j r given by expression (11). 

2 22
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   (21) 

if we assume that the system parameters are slightly variable 

through time, we can write the following expressions: 

( ) ( ) ( )

( ) ( ) ( )

( 1) ( )

( 1) ( )

T

a i

T

b i

k e k x k

B k e k u k

A k A k

B k k

 

 

  
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      (22) 

By substituting (22) into (21), and after some manipulations 

using the properties of trace we obtain: 

2 ( ) 0V k    if    0 2
a

      and     0 2
b
   

B.  Theorem 

Based on the Lyapunov theory for discrete systems, a 

sufficient stability conditions for ensuring asymptotic stability 

of the closed loop system (10) follows: 

 max

1

( ) 1i i

r

i

k 


 
  
 
 

 

 0 2
a

   

 0 2
b
   

V. SIMULATION RESULTS 

To illustrate the performance of the presented approach, 

two degrees of freedom robot manipulator arms system is 

considered as numerical example [4,9,10].  

A.  System description  

The dynamic model shown in Fig. 2 of the system is given 

by the following equation: 

( ) ( , ) ( )M q q C q q q G q u                   (23) 

Fig. 2  Two link robot manipulator 

Where q is an 2-dimensional vector of generalized 

coordinates representing joint positions, u an 2-dimensional 

control (torque) input, and ( )M q a symmetric positive definite 

inertia matrix. The terms ( , )C q q q and ( )G q account for 

centrifugal/ Coriolis forces, and gravity.  

where 

1 3 2 2 3 2

2 3 2 2

2 cos( ) cos( )
( )

cos( )

a a q a a q
M q

a a q a

 
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
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2 1 2
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(
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C q q a q
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 
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1 1 2 1 2

2 1 2

cos( ) cos( )
( )
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b q b q q
G q

b q q

 
 
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 



 

and 
2 2 2

1 1 1 2 2 2 1 1 2c c
a m L m L m L I I     ,

2

2 2 2 2c
a m L I  ,      

1 23 2 ca m L L , 1 11 1 2
( )cb m L m L g , 22 2 cb m L g  

for 1: 2i  ,  and i i im L I  indicate the mass, the length and the 

moment of inertia of arm i and ciL is the distance between the 

joint and the center of the arm respectively. g is the constant 

of gravity. 

1 2 and m m  are supposed to contain unknown uncertainties 

with known upper bound. 

g
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Let the sate vector and the input vector at the discrete time k : 
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T T

x k x k x k x k x k q k q k q k q k 
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u k u k u k  
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21 22
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h h


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 
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And the function 
1 1

2

( )
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F x M x C x G x

f x


 
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  

     

Using the Euler approximation ( 1) ( ) ( )X k X k TeX k   , 

with Te is the sampling time, the dynamic system can be 

described by following discrete equations: 

1 1 3

2 2 4

(3 3 1 11 1 12 2

24 4 2 21 1 22
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x k x k T x k
e

x k x k T x k
e
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e
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



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The parameters of the manipulator arms are : 

1 2 1m m kg  , 1 2 1L L m  , 1 2 0.5c cL L m  , 1 5I  ,

2 2I  and
2

9.8 /g m s and 0.1T s
e
 .The angular positions 

21
,q q are constrained within  ,  . 

B.  Fuzzy model  

The purpose, in this section, is to stabilize this system 

around the origin using methods presented previously. 

In this simulation, the manipulator states are assumed to be 

measurable and the mathematical model is considered 

unknown and we introduce disturbances on
1

m and 
2

m at the 

time 30k  . Thus, the mass variations are 
1

0.4m kg  and

2
0.6m kg  . 

To minimize the design effort and complexity, we try to use 

as few rules as possible. Five fuzzy rules, for each states 1x  

and 2x , are fixed. The gaussian membership functions are 

shown in Fig. 3 

 

 

 

 

 

 

 

 

Fig. 3 Membership Functions of 1x and 2x  

The five fuzzy model rules are as following: 

21 1 2 if  x ( )  and ( )  then ( 1) ( ) ( )

for  1...5

i i i ik is M x k is M x k A x k B u k

i

  



The rules of the designed fuzzy controller are: 

21 1 2 if  x ( )  and ( )  then u( ) ( )

for  1...5

i i ik is M x k is M k K x k

i

 


 

The feedback gains iK are computed at each discrete time 

so that the closed loop poles are fixed inside the unit disc for 

all local models i i iA B K . The five poles are chosen to be : 

 1 0.0114 0.2866 , 0.2538p i i   

 2 0.0016 0.3834 , 0.0022 0.5879p i i   

 3 0.0028 0.1162 , 0.0148 0.0501p i i   

 4 0.2496 0.1748 , 0.2426 0.2892p i i   

 5 0.1378, 0.42, 0.0445 0.1601p i     

Fuzzy rules consequence parameters are initialized to 

satisfy the system controllability condition. 

To adjust 
i

A and iB ,
a

 and
b

 have been chosen to be 0.8 and

3
10


 respectively. 

Figs. 4-6 present the simulation results of behavior of the 

state variables of the robot manipulator arms with parametric 

variation and its control laws respectively. 

Simulation results demonstrate that the proposed controller 

is able to stabilize the robot manipulator for initial conditions 

0 0
6 4

T
  
  

in the origin in spite of presence of mass 

variations.  

 

FIG. 4  Evolution of system’s states 1x and 2x  in presence of parameters 

variation 
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FIG. 5  Evolution of system’s states 3x and 4x  in presence of parameters 

variation 

 
  FIG. 6 Two link robot manipulator inputs in presence of parameters variation 

 

 

VI. CONCLUSIONS 

This work deals with indirect adaptive fuzzy control by 

state feed-back technique for a class of nonlinear systems. The 

control scheme is applied for the stabilization of unknown 

or/and uncertain system. At the first step, the parameters of 

the fuzzy model are estimated under an adaptation law. In the 

second step, the control law is computed basing on pole 

placement method. Simulation results show that the control 

law gives satisfactory results for the case of the time varying 

parameters of the systems. 
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