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Abstract— This paper deals with the problem of trajectory
generation in the joint space, several mathematical functions are
used as motion profile. The choice of the motion profile is very
important because it affects the performance of the robot. Several
factors involved in this choice, but the most important is the
smoothness of movement and therefore the continuity of the
torque. To see the effect of each motion profile, we developed the
dynamic model of the flexible arm which allows us to simulate the
torque according to time.
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I. INTRODUCTION

Flexible robots are increasingly used in practical
applications. These robots are characterized by a slight
mechanical design in order to minimize congestion, energy
consumption and improve safety. In [1] the author quoted some
benefits of flexible manipulators: they require less material, are
lighter in weight, have higher manipulation speed, lower power
consumption, require smaller actuators, are more
manoeuvrable and transportable, are safer to operate due to
reduced inertia, have enhanced back-drive ability due to
elimination of gearing, have less overall cost and higher
payload to robot weight ratio.

Robot manipulators are generally constructed using heavy
equipment to maximize rigidity, in order to minimize vibration
of the system and get a good positional accuracy. The vibration
is due to several reasons among them the path planning. This
problem becomes greater in the case of robots with certainness
flexibilities but there is also in rigid manipulators

In the trajectory planning, the fundamental problem is to
find a motion profile along a given geometric path. This
motion profile must verify some requirements .The right choice
of the trajectory allows achieving certain performance and
reduce side effects such as vibration.

To better understand the effects of each motion profile on
the performance of manipulators in rapidity, energy
consummation and perturbation rejection, we tested these
profiles with flexible manipulator.

The remainder of this paper is organized as follows:
Section II present a general idea about the trajectory planning.
Section III is interested in the different motion profiles more
used in scientific literature. Section IV is dedicated to the
dynamic modelling for our flexible arm.  Simulation results of
the torques applied to the joint are presented in Section V.
Finally, concluding remarks are given in Section VI.

II. TRAJECTORY PLANNING OVERVIEW

Almost all techniques in the scientific literature on the
problem of trajectory generation are based on the optimization
of certain parameters. The algorithms in minimal time were the
first trajectory planning techniques proposed in the literature.
We also have the path planning for minimal energy that is
required for some applications with limited capacity of the
energy source (for example robots for space exploration or
underwater) and jerk minimum planning.

The degree of excitation of vibrational modes of the robot
will be directly related to the order of the regularity of motion
profiles. A trajectory that causes high acceleration
discontinuities produces a high vibrational excitation of certain
joints or the entire structure of the robot during movement. In
order to reduce vibration of the terminal member, it is now
conventionally added a constraint on the derivative of the
acceleration (The Jerk) [2]. With a jerk limited profile,
endpoint vibration can be reduced, and residual vibration can
be totally suppressed in some cases [3].
So fixing the variation of the acceleration leads to a limited
jerk motion profile (limited acceleration change) and
guarantees a smooth movement contrariwise excessive jerk
value can lead to the excitation of vibrations in the machine
structure.

In general we have three families of motions profiles, bang-
bang profiles, polynomials profiles and sinusoidal profiles.
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III. MOTIONS  PROFILES

A. Bang-Bang

These types of motion Profiles took their name from the
mathematical principle bang-bang formulated by Hermes [4].
This principle is to saturate the system control variable, or one
of its derivatives, by switching a number of times the
maximum level to the minimum allowable level. This principle
to ensure the saturation of the system control variable, or one
of its derivatives, by switching a number of times the
maximum level to the minimum allowable level. This
saturation allows optimizing the time because a system to
move from an initial position to a final position in minimum
time, it is necessary to use at any moment the maximum power
available to saturate Actuators [5].

Fig. 1 :Hermes principle

With a bang-bang motion profile, the minimum time is
provided by saturating acceleration. The trapezoidal profile
allows generating a continuous motion speed which ensures a
minimum time by saturating both the speed and acceleration.
Joint position of this profile may be expressed by Equation 1:
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With q( ) is the joint position according to time, T is the
duration of movement, τ is the duration of the acceleration
phase and i i i i i ia ,b ,c ,d ,e and f are constants which depend on

the initial position and the final position.

To an initial position at 0 rd and final position of 0.52 rd, with
a motion time of 0.6 seconds, we obtain the joint position for
this profile as shown in Figure 3.

Fig. 2 :Joint position  for  trapezoidal profile.

So we can express the speed of this motion profile in the form
of the Equation 2 and the acceleration in the form of Equation
3:
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To an initial position at 0 rd and final position of 0.52 rd,
with a motion time of 0.6 seconds, we obtain the joint speed
and the joint acceleration for this profile as shown in Figure 3
and Figure 4.

Fig. 3 :Joint velocity for trapezoidal profile.
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Fig. 4 : Joint acceleration for trapezoidal profile.

We notice that the discontinuity problem still exists in the
acceleration at τ and T-τ .Another motion profile based on
mathematical principle formulated by Hermes is proposed to
remedy the discontinuity is the s-curve. As it was presented in
[6], the trapezoidal profile exhibit large spikes in jerk, unlike
the s-curve motion profile exhibit finite jerk spread out over a
period of time. It is primarily this quality that contributes to
lower vibration for the s-curve profiles. Finite jerk necessary
means a continuous acceleration. Joint position of this profile
may be expressed by Equation 4:
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Based in Equation 4 we can get the joint velocity and the joint
acceleration for this motion profile. Figure 5 and Figure 6
represents the evolution of speed and acceleration with the
same simulation parameters in Figure 3 and Figure 4.

Fig. 5 : Joint velocity for S-curve profile.

Fig. 6 : Joint acceleration for S-curve profile

B. Polynomial motion profiles

The 3 most common methods are the linear interpolation,
the third-polynomial interpolation and the fifth-polynomial
interpolation. The general form of this type of motion profiles
defined by Equation 5

iq(t)=q +r(t)D (5)

With iq is the initial position, r(t) is he the interpolation

function and D the difference between iq and the final position

.

C. Sinusoidal profiles

Some applications require more complex move profiles. In
the case of complex mechanical systems (flexible arm), the
motion path planning may include trigonometric relationships.
We must choose the sinusoidal function and its parameters
based on the joint position of departure and arrival. We must
choose the sinusoidal function and its parameters based on the
joint position of departure and arrival.

IV. DYNAMIC MODELING OF ONE  FLEXIBLE ARM

A. Assumptions

Our system consists in a flexible arm pivotally connected to
the support (the base) at the origin (hub), this rotary connection
is performed by a DC motor. As it was presented in [7], a
schematic representation of the single-link flexible manipulator
system is shown in Figure 7, with E, I, Im, A, ρ, L2=2L1, and τ
represents Young's modulus ,second moment of area, hub
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inertia moment ,section, mass density per unit volume, length,
and rotation angle of the arm relative to the origin
respectively.

Fig. 7 : Flexible manipulator scheme.

We considered that: The depth of the flexible arm is
assumed being much smaller than its length. The length of the
arm is assumed to be constant to avoid problems and
difficulties arising when this length is variable and the shear
strain, the effect of the axial force and the rotational inertia are
negligible

For an angular displacement θ and an elastic deflection w,
the total displacement y(x,t) of a point along the manipulator at
distance x form the hub can be described as the sum of the
rigid body motion and elastic deflection w(x,t) as defined in [8]
.

y(x,t) = (t)+ w(x,t)q (6)

B. Euler-Lagrange formulation

The Euler-Lagrange formulation is the most used to obtain
the dynamic model of the robot. It is best suited for calculating
the direct dynamic model; this model and useful for simulation
and control [9]. The Euler-Lagrange formulation defined by
Equation 7:

i
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-

dt dq dq dq
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
(7)

With:

E : The total  kinetic energy of the robot,
U : The total  potential energy of the robot,

i : Torques or forces applied to the joint i

iq : joint variable.

Applying the Lagrange formalism, we obtain the dynamic
model which is characterized by Equation 8.

M q K q   (8)

Where q is the vector of joint variables  is the vector of
torques, M is the mass matrix and K is the stiffness matrix. If
we consider the friction, the model becomes as follows:

M q K q B q     (9)

With B is a vector of friction.

Based on the work of [10] and for two finite elements we
obtain the dynamic model of the systems .The two matrices M
and k are squares of size 5. The determination of the torque
depends on the only two in M (1, 1) and K (1, 1) since the
torque is applied only to the first variable in the joint vector.

We have
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V. SIMULATION RESULTS OF THE TORQUES APPLIED TO THE

JOINTS

After determining the dynamic model and based on
Equation 9 we determine the torque applied to the joint for
several motion profiles. We took Im= 0.004 kg. , A=0.02 ,
ρ = 3.25, L1=0.15m, l2=0.3m, I=1.67 10 , E=19310 .

Figure 8 shows the variation of torque applied to the joint
according to the time for the third-polynomial profile. We can
see that this profile ensures continuous torque for this joint. For
the first joint torque varies between 87 N/m and -87 N /m. This
continuity of the couple is favorable for the cancellation of
eventual vibrations, secondly this motion is also optimal
compared the energy dissipated by the actuator [11].

For the fifth -polynomial profile as shown in Figure  9, the
torque variation is smoother than that of the third-polynomial
profile; it is in a sinusoidal shape. The fifth -polynomial profile
provides a smooth movement similar to that of movement of
human joints. This movement is called a minimum- jerk
movement. It reduces the excitation of natural modes [12].

Fig. 8 : Torque applied to the joint for a third-polynomial profile.

Fig. 9 : Torque applied to the joint for a fifth-polynomial profile.

The simulation of the torque applied to the joint for a bang-
bang profile illustrated in Figure 10, shows the existence of a
discontinuity in the half time of movement. We notice the
existence of two equal phases: an acceleration phase and a
deceleration phase. The trajectories with discontinuous values
of accelerations and torques lead to two undesirable effects:
First, the real robot actuator cannot produce discontinuous
torque, causing a real path always late compared to the desired
path.

Fig. 10 : Torque applied to the joint for a bang-bang profile.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-100

-80

-60

-40

-20

0

20

40

60

80

100

Time(s)

To
rqu

e (
N/

m)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-60

-40

-20

0

20

40

60

80

100

Time(s)

To
rqu

e (
N/m

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-400

-300

-200

-100

0

100

200

300

400

time(s)

To
rq

ue
(N

.m
)

(11)



As shown in Figure 11 the trapezoidal profile is smoother
compared to the bang-bang profile. Instead of the Bang-Bang
profile which require instant switching actuators. The same
case for s-curve profile but the saturation does not last all
throughout the period of movement.

Fig. 11 : Torque applied to the joint for a trapezoidal profile.

Figure 12 : Torque applied to the joint for a s-curve profile.

VI. CONCLUSIONS

In this article, we have seen the effect of the usual
movements of laws on a flexible manipulator arm. This study
requires the establishment of the dynamic model of the
manipulator from the kinetic and potential energies. The
simulation results give us an idea of the influence of each
movement law especially on provocation of vibratory

phenomena. We see that a flexible arm requires a specific
trajectory which depends mainly on the physical parameters
and the type of flexibility. Choosing the path leads to a control
with soft movements and physically acceptable.
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