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Abstract—The tracking control of bilinear system with de- considered system is assumed to have a controllable linear
layed state is synthesized using Block pulse functions. A linear part without time delay. The control law is aimed to ensure,
controllers are designed allowing the systems output to follow not only stability but also a performance level dictated by a

a preshaped reference model. The parameters of the feedbackl. f del wh truction is st ifes
regulator are derived by solving a linear algebraic equation in the ''N€ar relerence moael whose construction is stronglyiresp

least square sense. Simulation results are provided to demonsteat from the original system. Exposed mathematical develogsnen
the merits of the proposed control approach. are based on the use of block pulse functions. Among all

other piecewise constant basis functions, the block-pulse
. INTRODUCTION functions set proved to be the most fundamental, which has
Time delays systems described by functional differentithe advantages to reduce computational complexities and
equation can be utilized to model many practical physicakecution time [13]. This powerful mathematical tool has
system. This phenomenon exists widely in the transmissibeen applied to solve various problems of automatic control
process of control signal, which can not be neglected iramely, optimal control [14], [15], [16], adaptive control
some accurate control systems. Time delays as a prim§29Q], identification [17], [18], [19], modeling and synthge®f
source of instability and performance degradation makésctional order systems[21] and model order reductior].[22
practical control systems hard to control [1]. On the othéfrhe general idea of this work consists on the projection ef th
hand, bilinear system is a class of nonlinear systems tlstaite space model of the controlled system and the designed
is derived by introducing the interactive product term ofeference model over block-pulse functions basis. Theulisef
the state variable and the control variable in the lineatestgproperties of the latter tool are used to represent delay
equations. The bilinear system may carry on the descriptivariables to convert nonlinear delay differential equadiinto
for many physical systems. As a result, analysis and contadbebraic ones. The final result is given as a linear algebrai
of bilinear continuous time delay system have been gmoblem which can be solved in the least square sense.
important topic. At present, most researchers focused on
the stabilization problem [2], [3], [4], [5], [6], [7], [8]1]9], The remainder of this paper is organized as follows. A
[10], [11], [12]. In some situations, the state or output ofhort review of Block-pulse functions is presented in thetne
control bilinear continuous time delay system is alwaysection. The problem statement is expressed in the section
required to track a signal generated by a reference model. Th The proposed development is carried out, finishing with
problem of model reference tracking control is more generallinear algebraic system to be solved in the section 4. A
and difficult than the stabilization one, because the formeumerical example is provided in the final section to illasr
requires the considered system not only to be stabilized lhe proposed method.
also to satisfy a specified tracking performance. Furthegmo
the problem of tracking control for delayed bilinear system !l- BLOCK-PULSE FUNCTIONS AND THEIR PROPERTIES
was not established in control literature. Then based isetheA, Block-pulse functions
observations motivate, we propose to Io_qk for a linear State\\e gefine a N-set of Block-Pulse Functions (BPF) over the
feedback control with a pre-filter for bilinear system Wltf',n erval [0, 7] as follows:
state delayed. However, the linear state feedback controﬁ ’ '

remains a simple structure that can be easily implemented in 1 T < %, for i=1,2,...,N
practical industrial processes. i (t) =

0 elsewhere
This paper proposed a tracking control design method Q)

for bilinear system with time delay in state. The proposedith a positive integer value for N. Alsop;(t) is the i-th
control is based on linear state feedback with a pre-filthe T Block-Pulse Functions. There are some properties for BPFs,
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the most important properties are disjointness, ortholifgna C. Operational matrix of integration

and completeness. _ The integration matrix of the BPFs is given by [26]:
The disjointness property can be clearly obtained from the .
definition of BPFs: / bx (D)t = Py (0) ©)
. 0, i#j 0
=12,...,.N i i(t) = .
v Za] )< 9 @l(t)gpj (t) { @z(t)v 7 :] Where
The other property is orthogonality: T (1) ? ;
0, i#j Py =—
ooy ={ 77 W o
Nt 0 0 1

The third property is completeness. Thus, any absolutely . . o
integrable function on the time intervi@l, 7') may be expanded D. Representation of a time delay vector function in BPFs

on BPFs basis as follows: A vector functionz(t) of n dimensional components which
e are square integrable if0,7] can be represented approxi-
F&) =" fipilt) () mately by a finite block pulse series
=0
. . . N-1
In practice, only N-term of (2) are considered, where N is a ~
povF\)/er of 2 tha)t/ is @ z(t) = Z zipi(t) = Xnon (1) (10)
- with -
t) = 0i(t) =F t 3
f(#) ;fw) NoN (D) ©) Xy=[a0 o o v ] )
with
Fx=[fo fi - fv-1] For ann component delay vector variabldgt — ) with
and z(t)=¢(t) —7<t<0 (12)
T
on(t)=[ o(t) e1(t) -+ ena(t) ] the block pulse series approximation :oft — 7) is given by
A scalar product computation leads to the values of thH#&5]
coefficients:
) N-1
p_N /T oot = Y /“”N“) fod @ 2(t—1)2 Y @ (elt) = Xa(on(t)  (19)
T i T (i0) i=0
B. Error in BPFs Approximation [24] where
If we assume thatf(t) is a differentiable function with e .
bounded first derivative on the time intenjal 7], that is v N _ _ [ G(r) for i=<p
x; (1) T x(t — 7)dt . for i>p
IM =0, such |f'(t)| <M i s B
The residual error whelfi(t) is represented in a series of BPF%Ni (14)
over every subinterv, I%, %} by the following relation: ()T
N .
The total error in the BPFs expansion pft) may be written *
as No1 and . is the number of BPFs considered ovex ¢t < 7, and
et) =Y elt), te[0 T] 6) Xx(m)=[=5(r) 2i(r) - 2y ]
=0
It can be shown that [25]: Let
> Culm) =1 Co(r) Glr) -+ Gualr) ]  (16)

_, T
2 2
lle@®I” = M" =7 (™ Then, we have [15]

Equation (7) clearly shows that the total error in approxiora * _
by an N-set of BPFs i¢ (4 ). Then vee(Xx (7)) = E (n, p) vee(Cu(r)) + D (1, 1) UeC(XN()N)

Nliril lle@®)|l=0 (8) where E and D are called the shift operational matrices,ngive
—+o0

b
which establishes that we will have an exact representatio% Lnpuscnp
of the function by using BPFs if N is high enough. E(n,p) = [ ] (18)

On(N—u)xnu



and I1l. PROBLEM STATEMENT
Consider the bilinear system with time delay in state de-

Onpscn(N—p) © Onpxnn scribed by the following state equations:
D(nnu): (19) . < 2
_ &(t) = Aoz (t) + Aoz(t — 7) + 3 Az (t)u;(t)
LyN—pyxn(N—p) * On(N—p)xnu =
E. vec operator and kronecker product properties + i Ax(t — T)u(t) + Bu(t) (25)
i=1

For any matrices X, Y and Z having appropriate dimensions,

the following property of the Kronecker product is given 23 x(t—1)=209 t€][0,7]
vec( XY Z) = (ZT ® X) vec(Y) (20) y(t) = Cx(t)

An important matrix valued linear function of a vector, de& whereu(t) = [ u1(t) wu2(t) ... wum(t) ]T € R™ is the
mat,, ) Was defined in [27] as follows: input vector,z(t) € R™ is the state vector;, € R" is a given
If V' is a vector of dimensiop = nm thenM = mat, ) (V) initial condition vector andy(t) € RP is the output vector.
is the (n x m) matrix verifying: The system is assumed to be locally controllable arowgnd

It can be rewrite as follows:

V = vee(M) (1) #(6) = Aoa(t) + Aozt — 7) + A (u(t) @ (1))
We notatee? p dimensional unit vector which has 1 in ti&
element and zero elsewhere. The elementary matrix is defined

by:

+A (u(t) @ x(t — 7)) + Bu(t)
(26)
. x(t—71)=x0 t€]0,7]
Ejj'=e @] (22)

y(t) = Cx(t)
where® is the symbol of the Kronecker product [23] and

Lemma 1

Let the matricesd = [a;;] € R™*™ and B € RP*9, we

have: A:[Al Ay o Am]
m and B o B
vec(A ® B) = vec ((Z > aijE,ZLjX") ®B> (23) A=[ A Ay ... A, ]
i=17=1
= M. (B)vec(A) ! The main objective of the framework is the synthesis of state
’ feedback control with feedforward gain:
where u(t) = Nye(t) — Kx(t) 27)
mxn : mxn Do hereN € R™, K € R™ andy,.(t) € RP is the reference
.. = [vec(ET" @ B)wec(ER*" @ B):. .. W ndYe -
min = [vee 1 ® B)vec( 2 ®B) ' input vector. The controlled time delay bilinear systemutio
vec( BT @ B)wec(EYy " @ B)wec(Eyy " @ B): reproduce sharply the dynamical behavior of a linear refere

. model and therefore r n ir rformances. h
e BT @ B vee(EMM @ B) odel and therefore responds to desired performances. Suc

reference model is described by the following state eqnatio

. mxn . . mxn
.vec(EZn X B) ..... vec(Em;f ® B)] xr(t) _ E(Lr(t) 4 ch(t)
(28)
Lemma 2 yr(t) = G (1)
We have: wherex,.(t) € R™ andy,(t) € RP
IV. MAIN RESULTS
on(t) @ on(t) = Mnon(t) (24) A. Linear reference model construction
where: The linear reference model is designed by taking the linear
i E{VfXN T part without time delay of the original system, that is to:say
Eé\;];XN ftl(t) = A()CC[(f) + Bul(t)
My = EéV§><N yl(t) = C.%‘l(t) (29)
' 21(0) = xq
ENéxN This system is assumed to be controllable ana: issate com-
L TNZN ponents are all physically measurable. The dynamic behavio




of linear system (29) could be easily tuned as desired simgly Control law synthesis

with a state feedback and a feedforward gain of the following From relations (26) and (27), state equation could be writte
form: as follows:
B i(t) = Agz(t) + Agz(t — 7) + A ((Nye(t) — Kz(t)) @ x(t))
ui(t) = Noye(t) — Kox(t) (30)
+A ((Nye(t) — Kz(t)) @ x(t — 7)) + BNy.(t) — BKx(t)

The matrixKy € R™*" can be synthesized by classical linear— 4, (¢) + Agz(t — 1) + A ((Nye(t)) @ (1))
approaches such as pole placement. However, the nigrix

R™>P which is useful to eliminate the steady state error could_ 4 (Kz(t) @ z(t)) + A ((Nye(t)) @ a(t — 7))
be determined, forn = p, by the following relation:

~A((Kz(t)) @ (t — 7)) + BNy.(t) — BKx(t)

Ny = — [C [Ag — BEo] ™" B} (Bl) = Apx(t) + Agx(t — 7) + A (N @ L,) (y.(t) @ (1))

—A(K @ 1) (2(t) @ 2(t)) + A (N @ 1) (ye(t) @ 2(t — 7))
whenp > m, it would be possible to comput®, through: ~ ~
—AK®I,) (z(t)®z(t — 7)) + BNy.(t) — BKz(t)

(36)
_ -1 ; ; ; ; :
No = —[Con [Ag — BKO]—l B (32) tTor?e integration of equation (36) on the time interjfalk] leads
t t
z(t) — z(0) = Ay [z(0)do + Ay [z(c — T)do
where C,,, is a restriction tom lines of C' which refer to ) © . Oof (@) 0‘({ ( )
the possibly controlled outputs with accorded inputs. Tds | A(NoI d
case is form > p, then (31) still holds but a pseudo-inversion AN L) Of(yc(o) @ w(0)) do
EC?Uld be computed. Finally, The parameters of (28) arengive CAK @ 1) f (2(0) ® 2(0)) do
' ° (37)
_ +A(N®I, (o) @x(oc—7))d
E=Ay— BKy,F = BNy, G =C (33) ( ) [ (welo) @ 2lo =) do
B t
~A(K®1I,) [(x(c)®z(c—7))do
0

t t
B. Choose of parameters (N, T) +BN [ y.(0)do — BK [ «(0)do
0 0

For fixed reference inpu.(t), the exact solutionz,(t) The expansion of state vecte(t) and the fixed reference input
of the constructed reference model can be obtained from tectory.(¢) over the basis of Block-pulse functions truncated

following relation: to the chosen order N given in equation (35), can be written
as:
. z(t) = Xnon(t), ye(t) = Yenon (1) (38)
2, (t) = ePlay + /6E(t7-r)Fy (r)dr (34 where Xy and Y.y denote state and reference input
) ¢ coefficients resulting from the scalar product (4).

Furthermore, the expansion of the delayed state vector
In order to choose the optimal number of elementary funstiom(t — 7) over the basis of Block-pulse functions truncated to
N of the Block Pulse Functions, we compare the exact solutitie chosen order N given in equation (35), can be written as:

x,(t) with approximate solution, given by: 2(t—7) = X5(r)on (1) (39)

where X %, () the delayed state coefficients given by equation
Based on the property given by Lemma 2, the Kronecker
product terms in the equation (37) can be also written as
where X,y denote state coefficients resulting from the scaldollows
product (4). The time intervdD, T] is given by steady state Ye(t) ® 2(t) = (Yendn (1) @ (Xnon(t)))
of the reference model. >~ (Yon @ Xn) (0n () @ o (1)) (40)
= (Yo @ Xn) Myon(t)



z(t) @z(t) = (Xnon(t) @ (Xnon (1))
= (Xn @ XN) (on(t) @ N (1))
= (Xn ® Xn) Myon(t)

(41)

)@zt —1) = ((Yenon(t) @ (X
(Yon @ X3 (7)) (6N () @ N (2))
(Yony @ X3 (7)) Myén ()

N(T)én (1))
(42)

I IIZ =

o

an

s(t)@a(t—7) = (Xnon(t) ® (X
> (Xy @ X5(1)) (¢ ( ) ® on(t))
= (XN @ X{(7)) Myon(t)

N(T)on (1))
(43)

The expansion of equation (37) over the considered B|0CE

pulse functions basis yields:

XN¢N( ) — Xonon(t) =

AOXNfngN o)do + Ao X (T ({tqu(o)dU
+A(N@1,) (Yon @ Xn) MN({thN(U)dU
- AK®IL,) (XN ®XN)MN£¢N(a)da
FA(N @ 1) (Yon ® X5y (7)) My Of o (0)do
~AK @ 1,) (Xy ® X5(T) Mthd)N

+BNYcNf¢>N dU—BKXNf¢N

The use of the integration operational matfty, defined by
equation (9), yields:

Xnon(t) — Xonon(t) =

Ao XNPNnoN(t) + Ao X% (T)Pndn (t)
+A(N®I,,) (Yen ® Xn) My Pnon(t)
—A(K®1,)(Xy ® Xy) MyPynon(t) (45)
+A(N @ 1,) (Yon @ X3(7)) My Pyén ()

—A(K @ In) (Xy ® X} (7)) My Py odn ()

+BNY.nPy¢n(t) — BEXNPyon(t)

Simplifying the vectorgy (¢) in both sides of (45) and using
the vec operator, it comes out:

vec(Xn) — vece(Xon) = (P ® Ag) vee(Xy)

+ (PE® 14_10) vec(X 3 (7))

+ ((Yen @ Xn) My Py)" ® A) vec (N ® I,,)

+ [ (Yen @ Xi (7 ) MyPy)" ® A) vec (N ® 1,,)

(P

(¢

( Xy @ Xn) My Py)” ®A) vee (K ® I,,)
(¢

( Xy ® X5(r

)) My Py) .A) vec (K @ I,)

+ ((YCJVPN)T ® B) vee(N) — ((XNPN)T ® B) vec(K)
(46)
ased on the property given by Lemma 1, it results:

vec(Xn) — vec(Xon) = (P ® Ag) vee(Xy)

+ (P @ Ag) vec(X (7))

+ (((Ven @ Xx) My Pr)" @ A) Ty (I Jvee (N)
— (((Xx ® Xn) My Py)" @ A) Ty (I Jvee (K)

+ (((Vew © X5(7)) My Pr)” @ A) T (I e (N)
-(«

)) My Py) A) M., (I )vee (K)

+ ((YCJVPN)T ® B) vee(N) — ((XNPN)T ® B) vec(K)
(47)
We underline that the main idea consists on equalizing con-
trolled system and reference model state. That is to say:
X,Non(t) & Xy = XN

x(t) =, (t) & Xnon(t) =
(48)

Furthermore, we apply the key property given by equations
(13) and (17), then we have:

w(t —7) = XH(T)on(t) (49)

where
vec(X3 (7)) = E (n, p) vee(Cu(T)) + D (n, 1) vee(Xn)

(50)
with p is the number of BPFs considered over interjéalr]
and E (n,u) and D (n, ) are constant matrices given by
equations (18) and (19). The constant matjiXr) € R™*#
is given by

Cu(r) = (51)

[Z‘O ) '.130]



Now, we replace the term&y by X, in equation (50), then where
we can computeec(X x (7)), it comes out:

A:[(OL1+043+045) (042+Oé4+046)],B:B
vec(X (7)) = E (n, p) vec(Cu(T)) + D (n, 1) vee(X,n)

(52) and .
Making use of themat operator, given by relation (21), we 0 = { vec (N) }
can computeX % (1), it comes: vee(K)
X3 (1) = mat(vee(X 3 (1)) (53) V. |LLUSTRATIVE EXAMPLE
By replacing in relation (47), the term¥y by X, we ob- Let us consider a delay bilinear system given by equation
tained the following equation, which unknows are the cdntr<§25) where:
law parameters 01 0 0 05 0
vee( X, n) — vee( X, PL ® Ag) vee(X, Ao=14 3 1 Aop=10 0 1
(Xrn) (ON)(N 0)(1\/) 10 1 0 0 0
+ (PY @ Ag) vec(X 3 (1)) 0 0 10 0
B == 1 O ’C =
. 0 9 00 1
+ ((Yen @ Xow) My Pr)" @ A) Ty (I e ()
0 0 0 0 0 O
~ (Ko © Xow) My P3) @ A) Ty (L Jvee (K) Ai=] 0 0 0], 4=|00 15
05 05 0 0 0 O
+ ((Yew ® X3,(7)) My Pr)" @ A) Ty (I Joee (N) 0o o 0o o
Ai=100 0]|,4=]05 0 0
( Xon ® X% (1)) My Py)" A) .0 (I Jvec (K) 000 0 0 05
and
+ ( (YonPy)T ) vec(N) — ((XTNPN)T ® B) vec(K) T
(54) T=2z0=[0 0 0]

The equation (54) could be written as follows: Note that the system in open loop is unstable, In order to

B = aqvec (N) + aguec (K) + agvec (N) + agvec (K) stabilize the open loop of the linear system defined by the
equation (29), we propose to place the poles of controlled
+asvec (Z\_f) + agvec (K) system asp; = —1, po = —2 and p3 = —9. Then, the

(55) following control gains are obtained:
where

= 18 0 22 14 1
B = vec(X,n) —vee(Xon) — (P§ @ Ao) vee(X,n) No = [ 0 05 ] Ko = [ 05 0 1 }
— (PY ® Ag) vee(X 3 (7)) The reference model defined by the equation (28) is char-
acterized by the following parameter matrices:
ay = (((YCN ® Xon) My Py)" ® A) np(In) o 1 0 0 0
E=| -18 —-11 O JF = 18 0
042:_(((XTN ®XrN)MNPN) ®A> mn( n) 0 0 -1 0 1

The exact solution of the linear reference mode(t), is
as = (((YcN ® X3 (1) My Py)" ® ft) (1) given for yei (t) = yea(t) = 1 by

] wir(t) = e = Fe7 41
ay = — (((XT'N ®X}§[(T)) MNPN)T .A) Hm,n(In)
.’EQr(t) — 178679t ( Tt _ 1)

o5 = ()" o) (=1

— T .
ag = — ((X;nPn)" ® B) For N = 27 = 128 ( Number of BPFs ) and” = 64, it can
It would be interesting to formulate our problem under thbe observed from figure (1) that we have a good approximation
following linear algebraic equation to be solved in the teasf the exact solution:,.(¢)

square sense: Then, the implementation of the proposed approach leads
A0=B (56) to the following control gains
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Fig. 1. States variables of the reference model Fig. 3. control effort
VI. CONCLUSION
_ 12.1809 0 In this paper, a new analytical approach has been introduced
N = 11111 0 for the synthesis of tracking control for bilinear systems
24.7684 99414 —5.2539 with delayed state by using Block pulse functions as an
K= _4.9207 —1.7%68 3.2251 approximation tool. The useful properties of the latted e

used to transform the differential equations into algebosies

Figure (2) shows responses of the reference model and fepending on gains of.regulators. The main contributiormef t
controlled systems outputs. Simulation results prove that P2Per can be summarized as the system performance guaranty

proposed control law computed using the developed appro:RW“y with stability which is obviously ensured. This i®de

follows perfectly the desired reference model. In figure, (35)y tracking a linear reference model. The effectivenesef t

shows the variation of the control signals andus,. It appears developed method is checked out by a numerical example.

clearly through simulation results that control objectiare Simulations results obtained show clearly the accuracy of
attained. the synthesized control law. In future works, we intend to

synthesize the control law for delayed nonlinear polyndémia
systems using orthogonal functions.
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