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Abstract—the problem of adaptation of the control laws, in 

different complicated processes, with the existence of defaults has 

been studied intensively in the last few years and more successful 

industrial applications have been reported. In this paper, we 

apply an adaptive control, on a real irrigation under pressure 

system, based on intelligent fault detection and isolation 

algorithm (block) and a mathematic model characterize the flow 

of water in our process where we tacked into account the slow 

phenomena transient and the probability of appearance of leaks. 

This paper reports an application of fuzzy technique, which can 

provide an adjustment tool for the on line control and a 

diagnostic tool of the process malfunction. 

Finally the effectiveness of our adaptive control structure which 

is based on an intelligent diagnostic module are represented and 

discussed through simulation.     

Index Terms— modeling, adaptive control, Intelligent 

Diagnosis of faults, leaks. 

I. INTRODUCTION  

During the last decade, there have been immense advances in the 

areas of adaptive process control and intelligent diagnosis based on 

the fuzzy technique. 

For under pressure irrigation system, the most important goal is to 

assure water distribution to all users and to reduce the water losses. 

The objective of this development is to be able to detect the leak and 

other faults in our system and update the control law to ensure the 

continuity of the proper functioning. 

The problem of leaks reduction is complex and requires coordinated 

action in different areas of management of the pump station well 

pipes and sprinkler distribution.  

In a context of scarce resources of water, reduce the leakage be very 

necessary. 

Undetected leaks do not cause interruption of service and distribution 

system continues to function properly. However, these leakage losses 

are responsible for up to 20% of the volume of water introduced in 

the network.  

Water losses caused by undetected leaks depend directly on the 

pressure in the pipes. When distribution conditions permit, the 

pressure reduction results in reduced losses. It is obtained by the 

introduction of valves, pressure reducers, stabilizers, in certain points 

of the network but in our work we will use another method is the 

intelligent diagnosis and the adaptative control where it ensures the 

desired dynamic and minimize the leak volume by reducing the 

pressure.  

In order to achieve our goal we built a intelligent diagnosis  block 

based on a fuzzy technique into the control of our system who has the 

supervisory role of the station and the detection of leaks and at the 

same time adapting the parameters of PI controller. 

To validate our proposed command structure, in the first place was 

modeled pumping station taking into account the possibility of 

occurrence of fault such as leaks, in order to simulate the dynamics of 

the station with the fuzzy diagnosis supervisor and the adaptive PI 

control. 

 

                      II. MODELING THE STATION 

It was necessary for us to seek a reference model on the one hand it 

helps to know the instantaneous operating area of the station and 

helps the diagnostic module to detect and locate faults and secondly 

to ensure the simulations necessary. 

Hydraulic equations representing the flow of water in a pressurized 

pumping station are written. For this, the Naviers-Stokes equations 

were derived for the Saint-Venant equations adapted to our problem. 

Several assumptions are made, including the compressibility of the 

flow, the presence of slow transient phenomena and the presence of 

leaks. We develop the calculations starting from the Saint-Venant 

equations [3] [4] [5] applied to the flow supported on an irrigation 

network under pressure. 

Extract the Naviers-stokes equations: 

To describe the flow, we used the Naviers - Stokes equations that 

describe the hydraulic behavior of a Newtonian fluid. 
First is considered that the two velocities of the two pumps are 
superimposable and linear which the following equation can be 

found. 

  1  2 V V V N                             (1) 

V1: flow velocity of water due to the growth of turbine fixed speed pump. 

V2: flow velocity of water due to the growth of turbine variable speed pump 
"N". 

V: total velocity of water flow in the pipe of the station. 

 

 
Fig 1: Pumping Station 
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The mass of water does not vary during its flow in the pipeline then: 
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.V 0

x r r r

rx 



    
         

    
               

(2) 

( ∇  : Operator nabla) 

 

Assuming that the reference is of Galilee, where one can write the 

equation of conservation of momentum as follows: 

qm
fext

t








                                   (3) 

τqm: momentum tensor. 

τfext : tensor of the external forces. 

Cauchy's equation is as follows: 

 . f                                    (4) 

It is assumed that water is under the sole action of gravity, so we will: 

 . g                                 (5) 

Where σ:  the tensor of the constraints for a viscous Newtonian fluid. 

With 

. 2  P I D                                (6) 

μ: Coefficient of shearing. 

D:  Tensor speeds of deformation. 

P: Pressure in Bar. 

ρ   Water density in Kg/l. 

𝑔 : Gravity or acceleration of gravity in N/Kg 

𝑓 : Force external in N 

Applying the operator nabla in the tensor of the constraints we have: 

 .     .  . 2P D                                 (7) 

Really, the pipe is PVC so we can neglect the thermal effect in the 

station so we can consider that the viscosity coefficients as constants 

and therefore we have: 

   . 0 .5 .D V                                 (8) 

We integrate the equations (6), (7), (8) in equation (5), we arrive to 

find the Naviers-Stokes equations as follows: 

. . ²
V

V V P V g
t

  
 

        
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           (9) 

A-Simplification the Naviers-Stokes equations 

The pipe of the station is closed because it supposedly has a check 

valve so there is no air in the pipe and therefore no friction between 

water and air. 

The water under pressure circulates in the axial direction. 

The leakage flow is in the radial direction. 

The velocity of the water flow along the tangential axis is null. 

The flows are axisymetric: meaning that they are invariant with angle 

“θ” 

We can write the equation of conservation mass (continuity) (2) as 

follows: 

 

 r VrVx 1
.V 0

x r r

  
     

  
         (10) 

 Can be deduced Naviers-Stokes equation starting from 

equation (9): 
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𝑓𝑥 : Coefficient of friction. 

B-Writing the equations of Saint-Venant: 

To simplify the equations of Saint-Venant we will oversize equation 

(11) 

We will consider a line length of pipes is 'L' and radius 'R', since the 

flow is incompressible so we have 𝜌 = 𝜌0 = 𝑐𝑠𝑡. 

Is noted with (. ̅ ) the dimensionless quantities and we pose that: 

1- Vx vx Vx
 

  
 

: Where ‘vx’ is the unit of the velocity 

scale along the axis of pipe. 

2- Vr vr Vr
 

  
 

: Where vr is the unit on the scale of 

speed along the radial axis. 

3- t K t
 

  
 

where 
kL

K
c

 is the unit on the scale of 

time 

o c: is the celerity of the pressure wave. 

o k: is a scale factor. 

o L/c : is the time the wave to run through the 

entire pipe. 

4- 
0 x xcV cV

P P P
k k

    
    

   
Where  

x xcV v
L

k K

 
  ; P

 
 
 

is the unit on the pressure 

scale. 

5- x L x
 

  
 

where x
 
 
 

 is the unit on the scale of the 

position along the pipes. 

6- r R r
 

  
 

where r
 
 
 

 is the unit on the scale along 

the radius of the conduits. 

7- 
xv

Ma
c

 is Mach number […] 

8- 0    
   

      
   

 

This type of distribution system water under pressure involve 

numerous dynamic phenomena as open sprinklers, closing 



sprinklers and operation of the two pumps and other phenomena 

called slow transient phenomena. 

In order to adapt our model to these phenomena we tried to add the 

other assumptions such as: 

9- 
xLV

Rel



 is the Reynolds number relative to the 

longitudinal length of the pipe. 

It is known that the study of this station requires consideration of the 

effect of long pipes, nodes and of course the rating of land so we can 

make all these charges, applied to the system, in a term called 

"hydraulic load H (t, x)." 

The hydraulic load is modeled as follows: 

 

 
 

 ,
p t

H t x h x
g

 


                              (12) 

 

According to Brenouillie, we can write the hydraulic load as follows: 

 1 2
P

H h h hx
g

 
    

 
                      (13) 

 

h1 and h2 are the heights  to the tank as shown in Fig 2. 

10- 
xcV

H H
gk

 
  

 
 

11- 
xQ SV Q
 

  
 

 

Integration of the equations in the case of a leak in the pipes: 

In order to apply the assumptions mentioned later we'll start first by 

reformulating Naviers -Stokes equations.  

In the first place we will integrate the equations found on the right 

section of the pipe. 

A-integration and averaging of the equation of continuity: 

The equation of conservation of mass (13), we will integrate it on the 

S section of the pipe it is posed constant throughout pipes S = cst; 

then we can write: 

 

 

0

0 0

1

1
0

S

S S

rVrVx
ds

x r r

rVrVx
ds ds

x r r

 
  

  


 

 



 

                      (14) 

If the formula Leibnitz integration is applied there will be the 

following equation: 

0 0

0

 

 

S S

S

Vx d S
ds Vx ds Vx

x dx x

d
Vx ds

dx

 
  

  



      (15) 

Similarly for the second part of the equation (16) but for ease of 

writing we will apply this change of variable: 

2  S R ;
2s r              2  ds r dr  

   

0 0

*

1 1
2  

2

S RrVr rVr
ds r dr

r r r r

RVr





 


 



 
          (16) 

*  Vr : this is the boundary condition reflecting the presence of leaks 

in a pipe: 
*   0Vr                                             (17) 

Finally we can write (16) in this form: 

*

0

 2 0

S
d

Vx ds RVr
dx

                         (18) 

It is assumed that the average velocity of the flow is written as 

follows: 

0

1
 

S

V Vx ds
S

                                      (19) 

From equation (20) can have the following relationship: 

*2
SV

RVr
x




 


                                  (20) 

The flow is written as follows: 

Q SV                                               (21) 

So (22) will be as follows: 

*2
Q

RVr
x




 


                                     (22) 

*2  RVr : is called radial mass flux which indicates the existence 

of leaks in the pipes: 

If 
*2 0RVr   so no leaks 

If 
*2 0RVr   leak exists 

B-Integration of the equation of Naviers- Stokes: 

We begin by determining the equation of 'fx' in the equation of 

Naviers-Stokes. 

Since ρ = cst and gravity drift potential, 'fx' takes the following form: 

  xf g x
x



 


                                       (23) 

Using equation (13) and (23) the equation (12) takes the form: 

 

 

2

2

2

2

1
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         

       
(24) 

In order to apply the formula Leibnitz it develops the first part of 

equation (24) using (11): 



 ² 1 1
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t x r r







        
          

        

           
                             

         
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         

                           (25) 
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   

 
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Where:
2

0

1
²

S

xV ds
SV

    : The coefficient of Boussisneq. 

Second Baths: 

   
0

   

S
H H

g ds g S
x x

 
 

  
                     (27) 

Third Baths: 

2 2

2 2

0

S
Vx SV

ds
x x

 
      

     
        

                      (28) 
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 

0 0

1 1
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2 / 2

S R rVxVx
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R Vx r R

  

  
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 
          

(29) 

 /Vx r      : The wall shear. 

Recapitulation : 

After integrating the equations of Naviers-Stokes on the section of 

the water pipe, the Saint-Venant system obtained for an 

incompressible flow: 

 
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(30) 

Now we can apply the assumptions that were mentioned later which 

are obtained the following equation without dimension: 

 
2

2

2

H t, x
  

x

  0
4

Q Q
k Ma

t x

Ma f
k

Q
k Ma L

Rel R
x




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  
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
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

    (31) 

f : coefficient of friction 

𝜏̅ : The unit of the scale on the shear line. 

Note: To make some simplifications, can be illustrated here the 

orders of a few variables: 

R≈ 1.5 cm, L≈ 1Km, Rel≈ 109, Ma≈ 10-3, f > 10-2, µ≈ 10-3Kg/m*s, 

k≈100, β≈1 : uniform flow, c≈ 1000 m/s, ρ≈ 1000kg/m3, Vx≈ 1m/s, 

Q≈ 5m3/h, P≈ 5 Bar, Vr≈ 10-3 m/s, K Ma/Rel <<1, K= 10s 

Can be simplified to equation (31) whose we have: 

 
2

H t, x
    0

x 4

Q Q f
k Ma k Ma L

Rt x
 

 
   
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(32) 

Recapitulation : 

Since it was in front of a real problem, we chose to keep the 

equations with its dimensions and finally found the Saint-Venant 

system that characterizes the flow of water in the under pressure 

pumping station, taking into account the slow phenomena transient 

and the probability of the existence of leaks. 

 
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
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           (33) 

    , 2 ,J Q t x t x
gR


                       (34) 

 

III. DEVELOPMENT OF LAW ORDER 

 

The objective of this work is to improve the performance of a station 

of irrigation by sprinkling which we tried to incorporate a new 

control law guaranteeing a certain performance and minimize the 

leak volume.  

In normal operation, the PI controller implemented in the control 

board of the station of irrigation appears very robust and efficient, but 

most real-world problems must take into account imprecise and 

uncertain information. The static PI controller shows the difficulty of 

adaptation. 

With the law of continuity, we know that the volume of water falling 

into the system is equal to the volume of water coming out of the 

system so if we want to save water and reduce the volume of leaks 

we choose to act on the pressure.  

In this work we choose to develop a fuzzy logic supervisor to view 

the status of the station and make the adequate action to make the 

necessary adaptation of the parameters of PI as a simlpe solution to 

reduce the effect of the leak in the station. 

The pressure regulation should be made taking into account two 

constraints. The first indicates that the pressure must be sufficient to 

ensure the necessary amount of water users. The second requires that 

http://www.synonymes.com/synonyme.php?mot=r%E9sum%E9
http://www.synonymes.com/synonyme.php?mot=r%E9sum%E9


the pressure should not be excessive so as not to increase leakage and 

show the burst pipes. 

A. Design of a fuzzy supervisor: 

The fuzzy supervisor has the error « e » and its derivative « 𝑒̇ » as 

inputs and the command « 𝐶𝑐𝑓 » as output. 

The output of the proposed fuzzy supervisor can be written as 

follows: 

         
N

i 1 i 1

, ( ) / ( )
N

i i i i

cf i A B A BC S e e e e e e   
 

    
                                    (35) 

N: Number of fuzzy rules; N=25. 

 
 

A : Degree of membership of « e » in  

 
 

B : Degree of membership of « 𝑒̇ » in  

To synthesize the fuzzy supervisor, we divided the universe of 

discourse for the error and its derivative into five groups: NG, NM, 

AZ, PM, and PG.  
Table 1: Matrix Inference of fuzzy supervisor. 

      e 

𝒆̇          

NG NM Z PM PG 

NG K K KM KM KTG 

NM KM KM KM KM KG 

Z KM KP VZ KP KM 

PM KG KM KM KM kM 

PG KG KG KG KP KP 

 

B. Control station with PI controller and fuzzy supervisor: 

In order to control the irrigation station by a PI controller and fuzzy 

supervisor is considered the functional diagram of the following 

command: 

 

 
Fig 2: The functional diagram of the command. 

The control law provided by the PI controller can be written as 

follows: 

           𝐶𝑃𝐼 = 𝐾𝐶𝑐𝑓
[(𝑃𝑐𝑜𝑛𝑠𝑖𝑔𝑛 − 𝑃𝑜𝑢𝑡𝑝𝑢𝑡 ) +

1

𝑇𝑖
∫(𝑃𝑐𝑜𝑛𝑠𝑖𝑔𝑛𝑒 − 𝑃𝑠𝑜𝑟𝑡𝑖𝑒 )𝑑𝑡]                                                                         

(36)                                                    

Where:         

   1 2, ,cfC f e e e f e e e                                        (37)                                                    

    

                         IV. RESULTS OF SIMULATION 

 

In this part we represent the results of simulation with a comparative 

study showing the differences between the simple command with a 

PI controller and the influence of adding a fuzzy supervisor on the 

dynamics of flow leakage. 

 
Fig 3: Evolution of the pressure in the station controlled only with a PI 

controller 

The signals represented in Figure 3 shows that initials parameters of 

the PI controller ensures the desired performance and robustness 

against a disturbance which can reach up to 20% at the pressure. 

 
Fig 4: Evolution of the pressure in the station. 

 
Fig 5: Evolution of the flow in the station. 
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Fig 6: Evolution of the leak flow in the station. 

 

The signal (Fig 4) shows that the PI controller installed on the station 

irrigation sprinkler leakage evolves as if the operation and not a fault 

disturbances, which we note that the latter has provided a set pressure 

in the order of 5 bar; consequently an increase in energy consumption 

was noted. The “Fig 5” illustrates the evolution of the flow is directly 

proportional to the energy consumption where it was noted that the PI 

controller commissioned to increase the flow station to dissipate the 

effects of pressure on leaks. In the third signal we consult with a PI 

controller the volume of leakage is increasing during regulation. 

The integration of a diagnostic block, which is based on techniques 

of artificial intelligence and especially fuzzy logic gives us the ability 

to program the diagnostic function using only the operator's 

expertise; has proved its effectiveness. 

The intelligent diagnostic block not only the role of diagnosis but 

also has an adaptive role he reacts to the pressure to reduce the 

volume of detected leaks. 

The intelligent diagnostics block distinguishes the difference between 

a disruption and leakage by analyzing the temporal evolution of the 

last two of which were noted after the practical tests of the dynamic 

leakage standpoint pressure and slower than disturbances. 

The adaptation of the order must be made taking into account the 

three constraints. The first indicates that the pressure must be 

sufficient to ensure the proper functioning sprinklers. The second 

requires that the pressure should not be excessive so as not to grow 

the volumes of leaks that cause the bursting of pipes and damage to 

equipment levels (sprinklers, filters, corrosion of turbines ...). Third, 

we need to keep the desired performance. 

The technique of reducing the set point is commonly used in high 

pressure hydraulic systems and especially in the distribution of 

drinking water. 

In Figure Fig 4, the blue signal illustrates the dynamics of the 

terminal pressure pipes which we simulated the existence of leaks by 

the action on “the drain valve” at a time t = 40s. The diagnostic 

algorithm has detected that dynamic and has classified as leaks then 

she changed the set parameters to respect the constraints that were 

mentioned above. The set will therefore be equal to 4 bar in the 

presence of leaks. 

To ensure the desired performance, we injected a disturbance at a 

time t = 100s and it was found that the control loop reacts perfectly 

and provides the desired performance for that area of operation of the 

pressurized irrigation station. 

The addition of a block of the diagnostic to moderate energy 

consumption and volumes of leaks, there is illustrated respectively in 

that the evolution of the signal flow and the dynamics of the volume 

of water lost.
  

 

 

VI. CONCLUSION 

 

In this work we tried to improve the performance of a water pumping 

station under pressure by integrating a adaptive control law and a 

block of diagnosis based on a fuzzy supervisor. 

Initially, we worked to find a mathematical model represents the 

dynamics of the different variables in the station incorporating the 

long phenomena and the probability of leaks. 

This model was very necessary to us even if it seems very 

complicated, but we chose to leave it with the real dimensions 

because our goal is not just simulation but more than that we want to 

pass an implementation practice on the station. 

Then we chose to order the station with an adaptive PI controller 

which its parameters are calculated using a fuzzy supervisor. 

The fuzzy supervisor does not have a diagnostic block, but more than 

that is change the parameters of PI regulator to reduce the pressure 

and therefore reduce leaks. 

Simulation results are very encouraging who’s a fuzzy supervisor has 

detected the existence of leaks and it has also reacts well; against part 

he has distinguished the difference between a disturbance 

consumption and leakage. 

Our regulation also remains perfect whose the supervisor reacts 

reducing pressure, but also ensuring continuity of good station 

operation with minimal pressure. 
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