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Abstract— Carbon nanotubes are allotropes of carbon, formed by 

a rolled-up sheet of graphene. These are characterized by 

important electrical proprieties at high frequency which make 

them good candidates for microwaves systems such as antennas 

applications.  The aim of this paper is related to the assessment of 

a current distribution along the dipole nanotubes antenna using 

the transmission line theory and antenna theory respectively. The 

dipole antenna is excited at its center by a gap voltage source. 

The antenna theory uses the Pocklington equations and has been 

solved using Galerkin method, while the transmission line 

approach uses the telegrapher’s equations and has been solved 

using the transmission line technique. Some illustrative 

numerical results have been presented to discuss the 

performance of carbon nanotubes antenna compared to 

conventional thin wire antenna.   

 

Index Terms— Carbon nanotubes (CNT), dipole antennas, 

nanowire, transmission line model. 

 

I- INTRODUCTION 

Carbon nanotubes (CNTs) were discovered by Ijima in 

1991[1], there are two kinds of CNTs ; Single Wall Carbon 

Nanotubes (SWCNT) and Multiwalled carbon nanotubes, 

depending on the number of rolled up scheet of graphene. We 

focus here on SWCNT. Because the crystal structure of 

SWCNT is strongly related to that of graphene, the tubes are 

typically identified based on the lattice vectors of graphene. 

As illustrated in Fig.1, a SWCNT can be obtained by 

rolling up a scheet of graphene around a vector as defined by 

the chiral vector C


 which defines the circumference of the 

tube. The chiral vector C


 is specified by a pair of integers 

(n,m) in the basis formed by the lattice vectors of graphene 

(a1,a2) : 

1 2C na ma 
  

                                      (1) 

The diameter of the nanotubes can be expressed as [2]:  

2 2a
d n m nm


                                   (2) 

Where a is the crystal lattice constant: 3 c ca a   (ac-c =1.42 

A° the distance separating two nearest atoms) [3]. 

We define the chiral angle, which is the angle between C


and 

1a


. The chiral angle can be evaluated as [4]: 

1

2 2
1

. 2
cos

2

C a n m

C a n nm m



 

 

 

                      (3) 

Because the honeycomb lattice is symmetric, the value of θ 

is in the range 0 30   . 

If the nanotubes is of the type (n, 0) (θ=0), is called zigzag 

nanotubes, nanotubes of the type (n,n) (θ=0), is called armchair 

nanotubes. Both zigzag and armchair nanotubes is called 

achiral tube (n,m≠n≠0) . 

There are two possible choices for the pair of the integers 

(n,m): if the condition n-m=3l   is always satisfied, the 

nanotubes is metallic , else if the condition n-m=3l+1 is 

satisfied, the nanotubes is semiconducting [5]. 

In our previous modeling work [6], CNT is considered as 

antennas, but did not discuss their performance potential. 

Recently, SWCNTs are synthesized with a length comparable 

to the microwave in free space. This motivates our work to 

explore their properties as antenna. Since CNT can be grown 

having length on the order of centimeter and can be metallic. In 

the range of centimeter and millimeter applications, CNT 

antennas are originally proposed by Burke [7]. 

In [7] CNT dipole antennas is modeling based on a 

transmission line approach, so the transmission line 

parameters; kinetic inductance LK, quantum capacitance CQ 

and resistance R are determined. 

Another common approach for simulating electromagnetic 

wave propagation along CNT based on these electrodynamics 

properties is proposed [3]. This approach presents a 

macroscopic view for the interaction of high frequency 

electromagnetic field with CNTs based on equivalent dynamic 

surface conductivity.  

In this paper, fundamental properties of finite length dipole 

CNT antennas are investigated using the transmission line 

approach and a Hallén‟s integrodifferential equation 

respectively. The current distribution and the radiation pattern 

are presented and compared to the classical metallic antennas 

of some size and shape.               
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Fig.1: crystallographic graphene structure showing coordinate system, 

lattice vectors, chiral vector for different type of CNT. 

 

 

II- MATHEMATIC FORMULATION 

 

1- Electron fluid model of CNT transmission line 

 

Electron fluid model is presented to describe the linear 

response of a SWNT to an applied electromagnetic field. This 

method is based on the classical problem of moving point 

charges in electric field and using the effective mass for the 

moving electrons to include the effect of CNT lattice. The CNT 

is modeled as a continuous infinitesimally cylinder of length l 

and radius r disposed along the z axis. The thermodynamic 

equilibrium is characterized by uniform distribution of π-

electrons. This equilibrium distribution is perturbed by an 

applied electromagnetic field. The motion of the perturbed π-

electrons is modeled as a compressible charged fluid with 

friction. Note that VZ(r,t) is the velocity of the electron fluid, 

and a point at the surface S is identified by the position vector 

r. n0 is the density of electron fluid in equilibrium, 

n=n0+δn(r,t) is the surface number density of electron fluid. 

p=p0+δp(r,t) is the pressure of the fluid, where p0 is the 

equilibrium pressure. The variation of pressure perturbation is 

related to the variation of electron density by the relation:  
2

eff Fp m v n  where meff is the mean effective mass of 

electrons and vF is the electron Fermi velocity and equal to 

8.10
5
m.s

-1. The displacement of electron fluid obeys to the law 

of momentum conservation which can be expressed as[8]: 

 

0 0 0

Z

eff eff Z Z

V p
n m vn m V n eE

t z

 
  

 
                 (4) 

This momentum conservation equation can be expressed used 

the longitudinal current IZ=2π.r.e.n0.VZ and the surface charge 

density q=2π.r.e.n  

 
2

2 02
Z

Z F Z

eff

rn eI q
vI v E

t z m

 
  

 
                      (5) 

1Z

K Z Z

Q

I q
L RI E

t C z

 
  

 
                          (6) 

Where the kinetic inductance, ohmic resistance and 

quantum capacitance per unit length are respectively given by:  

28
K

F

h
L

v e
 ; 

28 F

vh
R

v e
  and 

28
Q

F

e
C

v h
  

The CNT can be modeled by an equivalent circuit with 

series elements distributed (Fig.2). 

 

 

 

 

 

 
Fig.2: Circuit model for electron flow along CNT. 

 

2- Circuit model for two CNTs 

 

In the case of two CNTs above a metallic ground plane as 

shown in Fig.3, the equivalent circuit model would be the 

combination of the equivalent circuit for electron current flow 

along the two CNTs and the conventional equivalent circuit 

model based on electrostatic capacitance and magnetic 

inductance [9].   

The electrostatic capacitance can be expressed by [4]: 

1

2 2

ln( / )cosh (2 / )

D D

ESC
d aa d

 


                         (7) 

The magnetic inductance is given by [4]:  

1 2
cosh ( ) ln( )

2 2

M M

M

a a
L

d d

 

 

                      (8) 

By a simple calculation we prove that: 

410M

k

L

L

    and       1ES

Q

C

C
                   (9) 

 

 

 

 

 

 

 

 
Fig.3: (a) Geometry of two CNTs over ground plane, (b) equivalent circuit 

model for two CNTs over ground plane. 

 

 

By applying ohm‟s law we find 
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                                 (10) 

Where γp is the propagation constant, and can be calculated as: 

2 2( )( )
4

k

p T

L
R jw jC w                                   (11) 

The current distribution can be obtained from the 

differential equation:   

CQ.Δ

z 

LK.Δz R.Δz 

(a) (b) 

w d 
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 
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 
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 
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                       (12) 

The characteristic impedance is  given by: 

1
( ) /

42

k

c tot

L
Z R iw iwC                                (13)

        
 

In the case where no loss the current distribution can be 

expressed by: 

0

0

sin ( ) ; 0
2 2

sin ( ) ; 0
2 2

( )
p

p

V L L
k z si z

Zc

V L L
k z si z

Zc

I z





 
   

 

 
    

 




 


                           (14) 

 

3- Radiation property 

 

The electric field is related to the current distribution 

by the expression:   
/2

cos

/2

sin ( )
4

likr
ikz

l

ke
E i I z e dz

r



  






 
  

 
                     (15) 

By substituting equation (14) in equation (15) we find: 

 

0

2 2

cos( cos ) cos( )
2 2sin

2
1 ( ) cos

p
ikr

p

p

k lkl
I ek

E i
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k




 




 





           (16) 

The radiation intensity is related to the Pointing vector by: 
2

2
2

2 0

2
2 2

cos( cos ) cos( )
2 2sin

8
1 ( ) cos

p

p

p

k lkl
k I

U r
kk

k





 

 
  

     
      

 


      (17) 

 

4- Dynamic conductivity and integrals equations for 

CNT dipole antenna 

Dynamic conductivity of CNT represents a macroscopic 

quantity relating to the perturbation of electron flow along the 

CNT due to the temporal variation of the applied electric field 

along it. Dynamic conductivity of CNT can be calculated using 

the Boltzmann kinetic equation of CNT. 

For a small radius of CNT, the dynamic conductivity can be 

expressed as [10]:   
2

2

2
( ) ( )

( )

F

cn zz

e v
w w j

a w j
 

 
 





                (18) 

Where e is the electron charge, ν is the relaxation electron 

frequency for CNT (equal to 3.10-12s-1), a is the CNT radius, 

 the reduced Planck constant and here we use the Fermi 

velocity as vF=9,71.105 m/s.                                                                                                                                         

Figure 4 shows the dynamic conductivity variation as 

function of frequency for different radius values of CNT. The 

dynamic conductivity increases when the radius decreases that 

shows the important conductivity of CNT with small radius. 

This equivalent surface conductivity is characterized by a 

complex value with a negative imaginary part. This negative 

imaginary part represents an inductive effect in CNT. This 

inductive effect introduces a deceleration in the 

electromagnetic wave velocity along the CNT which 

corresponds to decreasing the wavelength. This property is so 

important in the passive RF devices and antennas.  
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Fig.4: Dynamic conductivity as function of frequency for CNT for 

different radius values. 

 

CNT antennas can be treated as a finite conductivity 

cylinders excited at its center by a slice-gap source of unit 

voltage. In this case we use the dynamic conductivity to 

include the electrical property of the CNT in the mathematic 

formulation. For the case of simple CNT dipole antenna 

oriented along the z axis, current density is given by the ohm‟s 

law:   

  ( ) ( ) ( )zJ z w E z                                                (19) 

Where the electrical field is the sum of incident and 

radiated electrical field:  

( , ) ( , ) ( , )in rE z w E z w E z w                              (20) 

The radiated electrical field can be expressed as [3]: 
2 2( ')2

2

2 2 2

1
( ) ( ') '

4 ( ')

jk z z a
h

r

z
h

e
E k I z dz

j w z z z a 

  




 

  
    (21) 

Where h is the half length of the dipole and a is the antenna 

radius which will be in the order of nanometer, then we can 

approximate the current density as: ( ) 2 ( )I z aJ z    

So we can rewrite the Ohm‟s law as: 

( )
( )

2

in sc

cn z z

I z
E E

a



                                (22) 

Finally, we can deduce the Hallen‟s integral equation [3]: 

 
2

2

2
( ) ( ') ( ') ' 4 ( )

h
in

z
h

k R z z I z dz j w E z
z

 



   
          (23) 

Where the function R is given by: 
2 2 '( ')

2 2
( ')

( ')

jk z zjk z z a
e w e

R z z
a kz z a





   

  
 

            (24) 



 

The antenna is divided into N=2M+1 segments of width 

L

N
  , as shown in fig.5, and (23) is evaluated used the delta 

function basis for the small sample of antenna as:  
2

2

2
( ) ( ) 2 ( )in

n z nk V z kE z
z


 


                      (25) 

Where      ( ) ( ') ( ') '
2

h

n n
h

j
V z R z z I z dz



 
                    (26) 

And 





  

 

 

 
 

 

 

 

 

Fig.5: Segmentation of antenna with a delta-function (N=11)  

 

We can apply a finite difference approximation to the 

second derivative in z, which allows rewrite equation (25) as 

follows: 

2 1 1

2

2
2 inn n n

n n

V V V
k V kE  

 


                       (27) 

Denoting that ( )n nV z V  and ( )in in

n nE z E  

Then we have:               1 12n n n nV V V dE               (28) 

Where: 
2 2

1
2

k



  ; 22d k   and ( 1) 1M n M      

We can convert (35) in the corresponding matrix equation, 

as it‟s shown here for M=3.  
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(29) 

 

We may write (29) as:  AV d E  where δ is the 

projection matrix, we note that P is its complement P=Id-δ, 

which enforce the edges conditions I±M=0. 

 

( ) 0dPI I I                                   (30) 

The current along the CNT is expressed as the sum of the 

samples current Im using the basis function B(z): 

 ( ) ( )
M

m m

m M

I z I B Z Z


                        (31) 

Then equation (33) can be rewritten as follows: 

( ) ( ) ( )
2

M Mh

n m n m nm m
h

m M m M

j
V z I R z z z B z dz Z I



 
 

      (32) 

 

With the impedance matrix is given by: 

( ) ( )
2

h

nm n m
h

j
Z R z z z B z dz



 
                     (33) 

Then we deduce the current vector as:  1 1I dA Z E   

We can calculate the input admittance as a function of the 

number of segments Y0=I0/V0. 

 

III- RESULTS AND DISCUSSION 

 

In this section, we give a quantitative discussion about the 

responses of the single CNT dipole antenna. For setting some 

problem parameters, we begin firstly by studying the  

convergence of the antenna response. As illustrated in Fig.6, 

the real and imaginary part of conductance converges for a 

segments number M greater than 50 for the pulse and the 

triangular basis function. The results are obtained for M=100 

segments to ensure the convergence.  
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Fig.6: Real and imaginary part of admittance obtained for pulse and basis 

function. 
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Fig.7: Current distribution of CNT antenna with a radius a=2.71nm and length 

l= λp. 
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Fig.8: Current distribution of CNT antenna with a radius a=2.71nm and, length 

l= λp/2. 

 

 

The Current distribution along the CNT antenna has been 

calculated for different approaches. Obtained current 

distribution for an operating frequency equal to 10 GHz and 

applied gap-slice source of unit voltage, are shown in Fig.7 and 

Fig.8. In both cases there‟s small difference in the magnitude, 

while keeping the same shape of current distribution. This 

difference is due to the choice of the basis function.  

We present the radiation pattern of the CNT antenna and 

conventional thin wire antenna for different lengths and 

operating frequency f=10GHz. Obtained results are illustrated 

in Fig.9. 
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Fig.9:  Radiation pattern of CNT antenna with radius a=2.71nm and length 

l=λp. 

Note that the conventional thin wire antenna is more 

directives than the CNT antenna. If the length of the 

conventional thin wire antenna is of the order of 0.01λ, the two 

antennas generate the same radiation pattern.    

The far-field electrical field is the sum of electric field of 

each element with length l=λp. This field is cancelled if the 

number of elements even, because these elements are out of 

phase. If there are an odd number of elements, all elements are 

cancelled except the edges dipole element which radiate. This 

allows to conclude that an antenna of length equal to an odd 

number of elements of length l=λp is similar to an antenna of 

length l=λp.  

IV- Conclusion 

 

Fundamental properties of carbon nanotubes antenna have 

been investigated via transmission line approach and Hallen‟s 

integral equation based on a dynamic conductivity. The paper 

deals with the assessment of a current distribution induced 

along a straight CNT excited at its center by the gap-slice 

source of unit voltage using both electromagnetic approach and 

transmission line model. Results obtained via different 

approaches are found to be in satisfactory agreement. 
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