
Abstract- Nonlinear / non-Gaussian state-space 

models emerge in many applications in control and 

signal processing. In the last two decades, the Particle 

Filter (PF), also known as Sequential Monte Carlo, 

became a tremendously popular tool to perform 

tracking in nonlinear/non-Gaussian  dynamical 

systems. Howeverthe computational cost of the PF 

becomes prohibitive  when applied to high dimensional 

state-spaces. In this context, several authors proposed 

different strategies to overcome what became to be 

known as the “curse of dimensionality” of the PF. This 

paper presents a comparative study between a standard 

particle filter, the particle Markov chain Monte Carlo 

and the mixture particle filter, in tracking nonlinear 

high-dimensional systems.  

Keywords- High dimensional systems, mixture 

particle filter, nonlinear estimation, particle filtering, 

Particle Markov Chain Monte Carlo. 

I. INTRODUCTION 

The tracking problem can generally be considered 

as a dynamic state estimation problem, where the 

state is the set of unknown parameters of the target 

being tracked. The goal is to equentially estimate the 

state of the target from the noisy  observations.  

 Object tracking has been studied, in recent years, 

in various applications,  including robotics,  machine 

vision,  and video analysis. In a Bayesian framework, 

the tracking problem reduces to the estimation of the 

posterior probability density function (pdf) of the 

state given current and past observations [14]. For the 

linear Gaussian model, the optimal solution is given 

by the Kalman filter. In general nonlinear/non-

Gaussian state-space models, the analytical solution 

is intractable but several approximations can be used 

including the extended Kalman filter [1] and the 

unscented Kalman filter [2].   

The particle filter (PF) is a sequential Monte Carlo 

method to estimate the posterior density of the state, 

and does not make any assumptions about the pdfs or 

the linearity of the system model [13]. Specifically, 

the particle filter approximates the posterior pdf by an 

ensemble of particles and their associated weights. It 

has been shown that the particle filter converges 
asymptotically (as the number of particles tends to 

infinity) towards the optimal Bayesian filter in the 

mean square error sense [13] Thus, the PF appears to 

be the most promising in tracking nonlinear and non-

Gaussian  systems; however it is inefficient in high 

dimensional spaces. The number of particles required 

increases super-exponentially with the dimension of 

the state [6].  

Many authors proposed several approaches to  

deal with what is known as the curse of 

dimensionality issue, including Markov Chain Monte 

Carlo particle filter (PMCMC) [5,6,7], the Mixture 

Particle Filter (MPF) [8,9,10].  This paper presents a 

comparative study, in terms of performance and 

speed, between the standard particle filter, the 

particle Markov chain Monte Carlo and the mixture 

particle filter. The performance of the algorithms will 

be quantified using the minimum square error ( 

MSE). 

II. The PARTICLE FILTER 

Since their introduction within the signal 

processing community in the nineties, the particle 

filter became the  tracker of choice to deal with 

nonlinear and non-Gaussian problems [11]. Its 

popularity stems from  its simplicity, its ease of 

implementation and  performance in highly nonlinear 

systems.  

We consider a discrete-time state-space model 

defined by the state and measurement equations [3]: 

  kkk wxfx  1                                              (1) 

  kkk vxhy  1                                                (2) 

Where kx and ky represent, respectively, the 

unknown system state and measurement at time k; 

1:ky , kf  and kh  are non-linear functions; and kw  

and kv  are respectively the system and measurement 

noises. Let 1:ky  denote the set of past and current 

observations up to time k. In a Bayesian contect, the 

estimation of  the state kx  relies upon the posterior 

distribution
1:( | )k kP x y . The optimal state estimate is 

given by a point estimate, e.g., the mean, of this 

posterior density. Using Bayes theorem [4,12], the 

posterior distribution of the state can be written as  
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 where 
1: 1( | )k kP y y 

is the normalizing constant. The 

prediction of the state distribution is given by the 

equation: 

1: 1 1 1 1: 1 1( | ) ( | ) ( | )k k k k k k kP x y P x x P x y dx            (4)
 

The PF uses a set of random particles to estimate the 

posterior distribution of the state. Specifically, the 

posterior is approximated by a set of weighted 

particles 
( ) ( )

1{ , }i i N

k k ix w   [3, 4, 12]: 

 ( ) ( )

1: 1
( | )

N i i

k k k k ki
P x y w x x


                        (5) 

where   is the dirac delta function. 

The weights are normalized such that:  

N

i

i

kw
1

)( =1. 

Ideally, the particles need to be sampled from the 

true posterior, which is not available. Therefore, 

another distribution, referred to as the importance 

distribution or the proposal distribution, 

),/( 1 kkk yxxq 
is used. Theoretically, the only 

condition on the importance distribution is that its 

support includes the support of the posterior 

distribution. Practically the number of particles is 

finite and the importance distribution should be 

chosen to approximate the posterior distribution. The 

importance weights are given by: 
( ) ( ) ( )

( ) ( ) 1
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For instance, if the importance distribution is given 

by the prior density, 
( ) ( ) ( ) ( )

1 1: 1( | , ) ( | )i i i i

k k k k kq x x y p x x  , the weight 

equation  reduces to  ( ) ( ) ( )

1 ( | )i i i

k k k kw w p y x .
 

Given the discrete approximation to the posterior 

distribution in (5), the mean of the state at time k is:

( ) ( )

1

ˆ
N

i i

k k k

i

x w x


                                                   (8) 

The algoithm of the particle filter method is carried 

out according to the flowchart in Fig. 1.  

 

III. The PARTICLE MARKOV CHAIN 

MONTE CARLO 

      Markov Chain Monte Carlo (MCMC) algorithms  

were poposed to impove the particle filter 

performance in high-dimensional state-spaces [5, 7].  

A. Markov chain Monte Carlo 

     The MCMC methods are more effective than the 

particle filter in high dimensional problems [5,7]. The 

main idea of MCMC is to construct  a Markov chain 

(
1x  

2x …) whose stationary distribution 

corresponds to the distribution of interest p(x). The 

Metropolis-Hastings algorithm proposes an 

approach to build the Markov chain, which we adopt 

in  this paper. 

 

Fig 1. Flowchart of the particle filter 

 

The Metropolis-Hastings algorithm is a  two-

stage  procedure. The first step is to generate a 

proposal sample, denoted by 
*x , from  a proposal 

distribution, q (
*x |

nx ). Usually, 
*x  | nx   Normal 

(
nx ,

2 )[6,7]. The second step is the accept – reject 

stage based on calculation of the acceptance 

probability: 

* *
*

*

( ) ( | )
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n
n
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p X q X X

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 

  ,                  (9) 

Where p(x) denotes the target distribution that we are 

trying to approximate, here: the posterior density of 

the state given current and past observations  

1:( | )k kP x y .  

To implement the acceptance probability, a random 

number must be generated, between 0 and 1, denoted

 . Then: 

       If   >   

         
1nx = 

nx   

       else  

         
1nx = 

*x  

       end if  



B.  Particule Markov Chain Monte Carlo 

The underlying idea of the PMCMC approach is to 

perform a Metropolis-Hastings (MH) accept-

rejection step as a correction for having used a 

proposal distribution to sample the current state. In 

this paper, we adopt the development of PMCMC 

proposed in [5,7]. 

The algorithm of PMCMC is described as follows:  

Step 1. Initialize particle set randomly  

  For k = 1, . . . , T do 

   Step 2. Propose  1* |  m

kkk xxqx  

   Step 3. Compute the MH acceptance probability: 

            
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   Step 4. Accept 
m

kx =
*

kx with probability  *, k

m

k xx
  

   Step 5.The new particle set for approximating for  

   i

kx = m

kx  defined by: 

 ( ) ( )

1: 1
ˆ( | )

N i i

k k k k ki
P x y w x x


   

    end for 

 

IV. MIXTURE PARTICLE FILTER 

The mixture particle filter is based essentially in 

grouping the particles within components, wich are 

independately tracked. Each component is assigned a 

probability that is tracked using another Monte Carlo 

filter operating at a higher level. The component with 

the highest probability at any particular time step is 

considered as the true estimation at that instant. The 

mixtures of particle filters interact only in the 

computation of the mixture weights, thus leading to 

an efficient numerical algorithm. We adopt the 

mixture model proposed in [8, 9, 10]. 

The filtering distribution is modeled as an M-

component mixture model: 





M

m

ttmtmtt yxpyxP
1

,:1 )()(                              (10) 

  with




M

m

tm

1

, 1 . 

Note that no parametric model is assumed for the 

individual mixture components. With a known 

mixture filtering distribution 
1 1( | )t tP x y 

, and an 

obtained new prediction distribution,  the algorithm 

leads to predict the distribution for the m-th 

component. Thereby the new prediction distribution 

is squarely obtained by computing the prediction 

distribution, each  components individually, and 

combining them in a mixture which it retains the 

original component weights. 

In the mixture particle filter, the filtering 

distribution ( )k kP x y  is approximated by: 

 ( ) ( )

1: , 1
1

( )
M
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k k m k k k ki
m

P x y w x x 




               (11) 

The sum of all the particle weights and the mixture 

component weights is equal to one: 

  ( )

,

1

1, 1, 1,2,..., .
m
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New samples are generated from an appropriately  

chosen proposal distribution, that depends on the 

new measurement and the old state. 
( )i

kx  ∼ q( kx |

( )

1

i

kx  , ky ), i ∈ Im. To maintain a properly weighted 

sample set, the new particle weights are set to: 
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The weights are normalized using the following: 
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The new sample set  iti

t wx ,  i∈Im is then 

approximately distributed to ( | )m k kP x y . 

The approximation for the new mixture weights 

given by  
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V. SIMULATIONS RESULTS 

This section compares the performance of the 

standard particle filter with the mixture particle filter 

and PMCMC. We consider the following nonlinear 

dynamical system, where the state has dimension 5. 
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where wk and vk are Gaussian white noise. This is a 

severely nonlinear example in both the system and  

measurement equations. 

We compare  the performance of all above 

algorithms applied to this example. The following 

figure shows the results of each method. 

 



 
Fig 2. Target tracking of the dynamical system in (15)  using the 

PF (top), micture PF (middle) and PMCMC (buttom). 

 

Figure 3 shows the minimum square error of each 

algorithm. 

 

 
Fig3 Minimum square error of the PF (red), mixtue PF (violet) 

and PMCMC (blue). 

 

 

Figures 2 and 3 display 50 time steps. The Standard 

particle filter and PMCMC use 500 particles. The 

mixture particle filter was constrained to have a 

maximum of five components and 100 particles per 

component. 

The comparative results for a typical run with 500 

particles are given in Figures 2 and 3. As is clearly 

shown in Figure 3, the standard particle filter has two 

error bursts, the first one between 7s and 12s and the 

second one between 30s and 33s. The mixture 

particle filter and PMCMC, however, are able to 

track the target successfully. Note that between 

PMCMC and mixture particle filter, the PMCMC is 

more efficient than the mixture PF as illustrated in 

Figure 3 using MSE. The convergence time of 

PMCMC is slower than the two other methods 

PMCMC converged in 2.430s, PF in 1.923s and 

Mixture PF in 2.276s.  

VI. CONCLUSION 

This paper presents a comparative study between 

a standard Particle Filter and two strategies, based on 

particle filter: the Particle Markov Chain Monte 

Carlo and Mixture Particle Filter approaches. These 

methods clearly represent interesting alternatives to 

the classic particle filter, especially in high-

dimensional state-spaces. The simulation results 

showed that, in terms of MSE performance, 

convergence and running time, the PMCMC 

approach exhibits a good tracking performance 

compared to the particle filter and mixture particle 

filter; however, it is slower than the other two 

methods.  
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