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I. INTRODUCTION 

 

Generally physical processes involve interacting dynamic 

phenomena of widely different speeds. The study of this class 

of processes using the techniques of singular perturbations 

[1],[2],[3],[4],[5], makes it possible to define a model of 

reduced order, thus leading to a reduction in the dimension of 

the associated regulators and to a simplification of the 

elaboration of the command.  

In the case of certain systems, the discovery of the 

separability of slow and fast dynamics has been the object of 

various works using matrix norms [5], Gershgorine’s circles 

[1],[6], lines [4], and defining a positive parameter in the 

associated state representation.  

 

In this paper we present a condition to conserve the 

property of the separability of an uncertain linear discrete 

system using the Gershgorine’s circles then, an IMC approach 

was extended to the reduced system [7],[8]. 

 

The remainder of this paper is organized as follows: 

Section II presents the basic IMC structure. Section III 

describes the proposed IMC structure, and finally an 

application of state-transition and bilinear discretization 

methods are applied for two-input-two-output system with 

specific IMC approach [7], [8], [9], [13], [14], [15]. 

II. SINGULAR PERTURBED LINEAR SYSTEMS 

The use of singular perturbations may allow the 

decomposition of the global system into many dynamic 

subsystems 

A. Problem statement 

Consider the uncertain linear multivariable discrete-time 

system 

n m

X(k 1) AX(k) BV(k)

Y(k) CX(k)

x, x(k) ,V(k)

   





 

                                               (1) 

It is assumed that the uncertainty of the system lies only in 

the characteristic matrix A. 

  

Gershgorin's Theorem: 

Each eigenvalue δ of a matrix A of dimension (n×n) 

satisfies at least one of the following conditions: 
n

ij ij

j 1
J i

-A A



               i 1,2,...n                                  (1.1) 

This condition means that all eigenvalues lie within the 

union U (C) of the circles Ci of (ci,Ri) such that: 

i iic A and 
n

i ij

j 1
J i

R A ,i 1,2,...n



                                 (1.2) 

The rays are taken on the elements of each row of the 

matrix A, we shall have the same conclusion if these are taken 

on the columns of A. If the set of circles U(C) can be 

partitioned into two disjoint sets V(C) and W(C) then the 

system has two different separable dynamics with: 

 i i i i 1V(C) C ,(c ,R ),R 1,2,...n                                   (1.3) 

 k k k k 1W(C) C ,(c ,R ),R ,k n 1,...n                           (1.4) 

As a consequence, the spectrum of the system is divided 

into a set of slow eigenvalues in V (C) and a set of fast 

eigenvalues in W (C) with: V(C) W(C)  . The 

separability factor μ can then be approximated by the 

following expression: i,k

(i,k)
µ max

(i,k)





                             (1.5) 

Our problem consists to search a condition which conserve 

the property of the separability using the method of 

Gershgorine circles for our system. 
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B. Conservation of the separation of dynamics 

When the system has the property of double time scale, it is 

written in the following singularly perturbed form (2): 

 

1 11 12 1 1

2 21 22 2 2

X (k 1) A A * X (k) B
V(k)

X (k 1) A A * µX (k) B

       
        

       
            (2.1)                        

  1

1 2

2

X (k)
Y C C *

µX (k)

 
  

 
                                                    (2.2) 

 

When 1n

1 1X ,X (k)  are the slow vectors of the 

considered system and 2n

2 2X ,X (k)  are the fast vectors of 

the considered system. 

 

ij* * 2

ij 2 1 2

A C
A , C , n n n

µ µ
     

 

The change in µ=0 to µ>0 is called a singular perturbation [2], 

[3],[4],[5], in this section we derive the fast and slow 

subsystems comprising a high order system. 

C.  Decoupling slow part -fast part 

The fast part is expressed by the equations (3) 

 
1

r 22 21 11 12 r

1

2 21 11 1 r

X (k 1) (A A A A )X (k)

(B A A B )V (k)





  

 
                                 (3.1) 

1 1

r 2 l 11 12 r l 11 1 rY (k) (C C A A )X (k) C A B V (k)                  (3.2) 

1

r0 2 21 11 1X X (0) A A X (0)                                                 (3.3) 

 

If system (2) is asymptotically stable, the fast modes are 

important only during a short transient period, and decay 

rapidly. After that period, they are negligible and the 

behaviour of the full system (2) can be described by its slow 

modes. 

The slow part is obtained by cancelling μ in both system (4) 

 

l 11 l l lX (k 1) A X (k) B V (k)                                              (4.1) 

l l lY (k) C X (k)                                                                   (4.2) 

l0 0X X                                                                               (4.3) 

 

It should be emphasized that letting µ 0 has reduced 

the 
1 2n n dimensional system (3.1), (3.2) to the 

1n dimensional system (4). 

III. PROPOSED IMC FOR MULTIVARIABLE UNCERTAIN LINEAR 

SYSTEMS IN DISCRETE CASE 

The IMC structure use explicitly the model [16], as a 

controller algorithm of the plant that is stable in open loop. In 

this case, the inverse model can obtain the controller [17], [18], 

[19], [20]. The IMC structure for multivariable discrete-time 

system is shown in Figure 1. 

 
Fig. 1 Structure for inverse model 

 

G(z): the process  

y(z): the Output vector of the 
process 

v(z): the disturbance vector 

 ym (z): the model output vector 

e(z): the reference vector  

u(z): the control vector  

d(z) :difference between outputs 
model and outputs process  

r(z): the reference vector 

 

The expression of the proposed controller C(z) is given by 
the following equation. 

1

1 1 1C(z) A /(I A M(z)) I /(A M(z))                                (5)                         

A1 is a gain matrix and M(z) is the transfer matrix of the model. 

A1 is expressed by the following expression =
1

A I  where I 

is the identity matrix and   is a chosen coefficient, A1
-1  is the 

inverse of the gain A1.                                                           

A. Stability 

 The system is stable if and only if each block of the IMC 
structure is stable in open loop. To ensure the process’s 
stability we are interested in the determination of the non-
localized extreme models using the indirect method based on 
the algebraic Kharitonov’s approach [10], [11], [12]. 

B. Static Error 

The precision of the system is evaluated by the difference 

between the output y(z) and the reference signal r(z). If the 

reference and the disturbances are chosen as vector of steps of 

amplitude equal to 1,  

 

    
1( )


E = lim 1 z y(z)

z 1
                                                         (6) 

E is a vector of dimension (m). We can conclude that the 

static error between the real and the desired output is 

asymptotically zero. 

IV. APPLICATION 

Let’s consider the interconnected multivariable system 

defined by the following transfer function iH (p) . 

1 1 2H (p)=(p+ )/(1+ p)(1 p)                                             (7.1) 

2 1 2H (p)=(p+ )/(1+T p)(1 T p)                                          (7.2) 

The global system S composed of transfer function can then 

be represented by the following differential equations: 

X=AX+BU
G(s)

Y=CX


 


                                                          (8)                                                       
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With: 

1 1 1 2 12 12

1 2 1 2 1 2 1 2

21 21 2 2 1 2

1 2 1 2 1 2 1 2

0 1 0 0

(1 k ) (k ) b b

A
0 0 0 1

b b (1 k ) (k T T )

T T T T T T T T

 
 
          
 
        

  
 
        
 
 

 

1 21

12 2

0 0

k b
B

0 0

b k

 
 
 
 
 
 

; 
1 2 1 2

1 2 1 2

1
0 0

C
1

0 0
T T T T

 
    
 
 
 
 

 

The step response of the system is figured in the following 

figure. 
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Fig. 2 Step Response for the system G(s) 

The application of the Gershgorine circles for the last system 

is presented by the following simulations. 
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Fig. 3 Gershgorine’s circles for the matrix A 

1 2 3 4C (0,1), C (-1.05,0.26), C (0,1), C (-1,1.5)  

We note that the separability is not preserved in this case, 

which leads us to make a calibration to appear this property of 

separability. It is necessary to choose a calibration matrix Ca 

such that: 

1

2

3

4

c 0 0 0

0 c 0 0
Ca

0 0 c 0

0 0 0 c

 
 
 
 
 
 

 

It is assumed that the system parameters are: 

1 2 1 2

1 2

1.3s; 4s;k 0.2;k 3

4; 0.4;T 2s;T 5s

   

     
 

    0         1           0            0

 -3.32  -16.92    -0.246   -1.538
A =

    0         0           0            1

   -5     -1.25      -32.5       -25

 
 
 
 
 
 

  

In our case the calibration matrix is equal to: 

0 1 0 5

1 16.92 1 1
Ca

0 0 0 1

1 1 16 25

 
 


 
 
 
   

 

A. Case of uncertain parameter 
12b  

Let’s consider that the uncertain parameter 
12b =0.2 and the 

uncertainty interval is [-5, 5]. The application of the 
Gershgorine’s theorem insure that the system have two-time 
scale. 

-2 -1.5 -1 -0.5 0 0.5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Fig. 4 Gershgorine’s circles for uncertain parameter 12b  

12b  V(C) W(C ) Diff(V,W)

=αi/αk 

µ µ max 

-5 0.77 1.032 -0.59/-0.9 0.655 0.827 

-1 0.318 1.032 -0.596/-

0.901 

0.661 0.760 

-0.5 0.318 1.032 -0.596/-

0.901 

0.661 0.760 

-0.2 0.318 1.032 -0.596/-

0.901 

0.661 0.760 

0 0.86 1.03 -0.59/-0.9 0.655 0.723 

0.5 0.32 1.032 -0.597/-

0.901 

0.662 0.752 

5 0.86 1.03 -0.59/-0.9 0.655 0.718 
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B. Case of uncertain parameter 
21b  

Now let’s consider an uncertain parameter 
21b  =0.5 and the 

uncertainty interval is included between ϵ [-30, 30]. The 

application of the Gershgorine’s theorem show us that the 

system have two-time scale. 
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Fig. 5 Gershgorine’s circles for uncertain parameter 
21b  

21b  W(C ) V(C ) Diff(V,W)=αi/αk µ max 

-30 --- --- -- No conclusion 

-20 --- --- -- No conclusion 

-10 0.35 4.048 -2.591/-2.701 0.949 

-5 0.308 2.215 -1.635/-2.027 0.761 

-2 1.392 0.703 -1.062/-1.413 0.722 

-1.5 1.286 0.769 -0.966/-1.31 0.708 

-1 1.18 0.832 -0.87/-1.208 0.687 

-0.5 1.074 0.9 -0.77/-1.106 0.684 

0 0.969 0.967 -0.67/-1.003 0.672 

1 0.84 1.1 -0.58/-0.798 0.814 

2 --- --- -- No conclusion 

5 --- --- -- No conclusion 

10 2.29 3.259 -2.029/-6.778 0.3684 

20 --- --- -- No conclusion 

30 --- --- -- No conclusion 

                   

C. Case of IMC control for reduced model 

Let’s consider the imperfect modeling characterized by 

the absence of disturbances, such that v(z) =0 where the 

model is chosen diffrent to the plant M(z)≠G(z) and the 

sampling time is equal to T=0.1 s. The chosen matrix A1 is 

equal to A1=70×I. The reduced systems are associated by 

applying the change of variable 
1

2

1 0 0 0

1 0 0
P

0 0 1 0

0 0 1

 
 

 
 
 

 

 

1 , 
2 are two distinct negative constant parameters which 

can be chosen arbitrarily. We obtained an estimated matrix 

included the subsystems 

The fast subsystem and the slow subsystem has been 

computed with the following matrix. 

 

11 12

21 22

-0.0039   -0.0203    0.0290 -0.0562

A -0.0205   -0.1595    0.0352 A -0.4525

0.0285    0.0278   -0.4790 0.0488

A -0.0605   -0.4976    0.0419 A -1.4172

   
   

 
   
      

 

 

 

The reference signals r1, r2 are chosen as vector of steps of 

amplitude equal to 1. The following simulations present the 

two outputs y1 and y2 of the slow subsystem. 
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Fig. 6 Output signal y1 for slow subsystem 

0 5 10 15 20 25 30
0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

O
u
tp

u
t 

y
2

Sampling Time [s]
 

Fig. 7 Output signal y2 for slow subsystem 

We remark that the reduced uncertain multivariable system 
controlled by IMC is able to conserve stability in the discrete 
case and to reach the reference signal with a small difference 
of amplitude. 

D. Case of disturbed system 
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Now let’s consider the presence of a disturbance vector and 
let’s show its effect in the case of the IMC proposed control. 

The disturbances are applied at the time T=15s. A1=10×I. 

The simulations results of the slow subsystem are given by the 
following plots. 
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Fig. 8 Output signal y1 for disturbed slow subsystem 
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Fig. 9 Output signal y2 for disturbed slow subsystem 

It is clear that the system outputs reach perfectly the input 
reference and the simulations show a robust behavior even on 
the presence of disturbances affecting directly the process 
outputs. We conclude that the proposed IMC approach rejects 
disturbances and ensure again its robustness.  

V. CONCLUSIONS 

In this paper a new approach for IMC of linear 

multivariable uncertain singular perturbed systems is 

developed in discrete case. The realized research is an 

extension of the IMC concept defined for continuous 

monovariable uncertain linear systems. An application of this 

proposed structure is proposed to test the effectiveness of this 

control to conserve stability and robustness despite the 

presence of both the reduced model and the perturbation. The 

simulation results show the proposed approach capability to 

preserve the system performances, to maintain the stability 

and to reject the external disturbances.  
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