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Abstract— A simple method to stabilize a class of linear switched 

systems that involves time-delay input is proposed. The 

approach, available for the case of arbitrary switching, is based 

on the use of the aggregation techniques as well as on the 

exploitation of a specific state space description of the system 

using the arrow form matrix. The idea consists in constructing a 

pseudo-overvaluing system relative to a regular vector norm and 

common to all the subsystems. The stability of this comparison 

system, expressed in terms of simple algebraic delay-independent 

criteria, permits to conclude to that of the original system. 

 

Keywords— Linear continuous-time switched systems; time-

delayed control; arbitrary switching; state feedback control; 

arrow form matrix; M-matrix. 

I. INTRODUCTION 

Switched systems are an important class of hybrid 

dynamical systems which consists of a set of continuous-time 

or discrete-time subsystems and a switching rule that 

orchestrates the switching among them [1], [3]. They have 

wide technological fields of applications namely in the control 

of mechanical systems, automotive industry, aircraft and air-

traffic control, switching power converters, communication 

networks, etc [2], [8]. 

Recently, stability analysis and control synthesis of such 

systems have received a growing attention. One of the main 

concerns of researchers is the problem of stability and 

stabilization under arbitrary switching. In this context, 

guaranteeing the asymptotic stability of each subsystem 

individually becomes insufficient and a common Lyapunov 

function for all the constituent systems is required [4-7]. 

On the other hand, considerable interest has been attributed 

to time-delay systems during the last decades as time delay is 

an inherent feature to many physical processes. In fact, delays 

emerge in many engineering applications such as rolling mills, 

pneumatic and hydraulic systems, automotive industry and 

robotic systems. They generally describe propagation 

phenomena, material and energy transfer in interconnected 

systems and data transmission in communication systems. 

It is well known that delays can often be a source of 

instability and poor control performances. 

Several results on analysis and control design approaches 

of time-delay systems are proposed and are divided into two 

main categories. The first one provides a controller which can 

stabilize the system independently from the size of the delay 

whereas the second takes into consideration the size of the 

delay. Even though it is commonly recognized that delay 

independent conditions are more conservative than delay-

dependent ones, they remain practical in some cases where 

time-delay is unknown or inestimable. 

Most of the results that have been reported on stability of 

switched time-delay systems are based on the search of a 

common Lyapunov-Krasovskii functional and the proposed 

stability criteria are formulated in terms of Linear Matrix 

Inequalities (LMIs) which can sometimes meet some 

computation difficulties even for some low-order systems [10]. 

In this paper, we give an extension of the result of Mori et 

al. [9] to the case of switched linear time-delay systems. The 

approach, based on the comparison principle technique, holds 

for the case of arbitrary switching and represents an 

alternative to the problem of existence of a common 

Lyapunov-Krasvoskii functionals. Moreover, methods based 

on vector norms approach can be considered no matter the 

number or the order of subsystems switching among each 

other is important [17-21]. The description of the system by 

using the arrow form matrix simplifies the study. 

The application of vector norms approach to switched 

systems to switched systems has already been introduced in 

[11-13] and has been extended later to time-delay switched 

systems in [14-16] 

The remainder of this paper is organized as follows. In 

section II, we give the model description and some 

preliminaries. Section III presents the main result related to 

switched systems described by delayed differential equations. 

A numerical example is provided to show the effectiveness of 

the proposed method. Finally, some concluding remarks are 

given in section V. 

Notations: The following notations will be used throughout 

the paper, n  denotes the n -dimensional Euclidean space, 

nI  is the identity matrix with appropriate dimensions, .  
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denotes Euclidean vector norm. For any 1( )i i nu u , 

1( ) n
i i nv v  we define the scalar product of vectors u  

and v  as: 
1

,
n

i i
i

u v u v . If 
1 ,ij i j n

M m , we denote 

by TM  its transpose, 1M  its inverse, 

* *

1 ,
ij

i j n
M m with *

ij ijm m  if i j  and 
*

ij ijm m  

if i j  and ijM m , ,i j . 

II. MODEL DESCRIPTION AND PRELIMINARIES 

A. Model description 

A linear continuous-time switched system subject to a time-

delayed input and acting under an arbitrary switching rule 

( )t i , 1,..,i I N  can be represented by the 

following differential equation: 

 
1

( ) ( )

,

1 0

( ) ( ) ( ) ( )
N n

n j

i i j

i j

y t t a y t u t   (1) 

where ( ) ny t  is the state vector, ( )u t  is the control 

input,   is the time-delay, ,i ja  are constant coefficients, 

1,...,i N  and 0,.., 1j n , N  is the number of 

subsystems switching between each other and ( )i t  is an 

exogenous function indicating which subsystem is being 

active at time t  such that: 

 
1 if ( )

( ) ,
0 otherwise

i

t i
t i I   (2) 

It’s obvious that 
1

( ) 1
N

i

i

t , 0t . 

The application of a state feedback control law of the form: 

 
1

( )

,

0

( ) ( )
n

j

i j

j

u t k y t   (3) 

with ,i jk  the components of the gain vectors 

,0 ,1 , 1, ,..,
T

i i i i nK k k k , yields to the following decription: 

 
1 1

( ) ( ) ( )

, ,

1 0 0

( ) ( ) ( ) ( ) 0
N n n

n j j

i i j i j

i j j

y t t a y t k y t  (4) 

A change of variable of the form 

(1) ( )( ) ( ), ( ),.., ( )
T

nx t y t y t y t  permits the system (4) to be 

put under the controllable state space representation: 

 ( ) ( )( ) ( ) ( )t tx t A x t BK x t   (5) 

or equivalently: 

 ( ) ( ) ( ),i ix t A x t BK x t i I   (6) 

where: 

 

,0 ,1 , 1

0 1 ... 0 0

,
0 ... 0 1 0

... 1

i

i i i n

A B

a a a

  (7) 

B. Preliminaries 

Theorem 1. [15] The matrix 
1 ,ij i j n

A a  is an M -matrix 

if the following properties are satisfied: 

 0 ( 1,.., ), 0   ii ija i n a  ( i j ; , 1,..,i j n )(8) 

 all the principal minors of A  are positive: 

 
1 2 ...

( ) 0 1,...,
1 2 ...

j
A j n

j
  (9) 

 for any given positive real vector 
1 2, ,...,

T

n
, 

the algebraic equations Ax  have a positive 

solution 
1 2 3, ,...,

T
w w w w . 

III. MAIN RESULTS 

In this section, we give sufficient stabilization conditions of 

system (6) via the control state feedback law (3). 

First, a change of base of the form ( ) ( )z t Px t  under the 

arrow form matrix description, allows the system to be 

represented by: 

 ( ) ( ) ( ),i iz t M z t N z t i I   (10) 

The arrow form matrices iM , i I  are given by: 

 

1 1

1 1

,1 , 1 ,...

i

n n

i i n i n

M   (11) 

where: 

 

1
1

1

,

1

, , 1

1

( ) 1,.., 1

( ) 1,.., 1

n

j j q

q
q j

i j i j

n

i n i n j

j

j n

P j n

a

  (12) 

whereas the delayed-state matrices iN , i I  are given by: 

 1, 1 1,1

,1 , 1 ,

0 0n n n

i

i i n i n

N   (13) 

with: 

 
,

, , 1

( ) 1,.., 1i j i j

i n i n

Q j n

k
  (14) 

and P  is the corresponding passage matrix such that: 

 

1 2 1

2 2 2

1 2 1

1 1 1

1 2 1

1 1 1 0

0

0

1

n

n

n n n

n

P   (15) 

Note that j , 1,.., 1j n  are distinct constant parameters 

that can be chosen arbitrarily and that ( )iP  and ( )iQ , i I , 
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are the instantaneous characteristic polynomials of matrices 

iA  and 
iBK  respectively such that: 

 

1

,

0

1

,

0

( )

( )

n
n p

i i p

p

n
p

i i p

p

P a

Q k

  (16) 

At this level, we can state the following theorem. 

Theorem 2. System (6) is asymptotically stabilizable via the 

state feedback control law (3) under an arbitrary switching 

rule ( )t i , i I , if there exist j , 1,..., 1j n , 

j q  j q  such that the following inequality is satisfied: 

 
1

1

, ,

1

0
n

c n c j j j

j

t t   (17) 

with:  

 
, , ,

, , , 1

max , 1,.., 1

max

c j i j i j
i I

c n i n i n
i I

t j n

t k
  (18) 

 

Proof. Seeing that the asymptotic stability of system (6) 

requires necessarily that of each individual subsystem and by 

applying the theorem of Mori et al., [], we can already say that 

each subsystem 
,i iM N  is asymptotically stable independently 

from the value of the time delay   if: 

 * ,i i iT M N i I   (19) 

is the opposite of an M -matrix. 

where: 

 

1 1

*

1 1

,1 , 1 ,...

i

n n

i i n i n

M   (20) 

 
1, 1 1,1

,1 , 1 , 1

0 0n n n

i

i i n i n

N
k

  (21) 

and  

 

1 1

1 1

,1 ,1 , 1 , 1 , , 1...

i

n n

i i i n i n i n i n

T

k

 (22) 

By referring to theorem1, iT  is the opposite of an M -matrix 

if: 

 ( 1) 0, 1,...,j

j j n   (23) 

It is clear that, for 1,.., 1j n , the condition (23) is checked 

since 0j . Therefore, for j n , relation (23) becomes: 

 ( 1) det( ) 0n

iT   (24) 

which is equal to: 

1 1
1

, , 1 , ,

11

( 1) 0
n n

n

i n i n j i j i j j k

kj

k  

 (25) 

By dividing (25) by 
1

1

1

( 1)
n

n

k

k

, we obtain: 

 
1

1

, , 1 , ,

1

0
n

i n i n j i j i j j

j

k   (26) 

The extension of the result to the overall switched system 

passes through the following steps: 

Let 
nw  with components ( 0mw  , 1,..,m n ) and 

consider the common radially unbounded Lyapunov 

functional for all the fuzzy subsystems ,i iM N  given by: 

 1 2( ( ), ) ( ( ), ) ( ( ), )V x t t V x t t V x t t   (27) 

with: 

 1( ( ), ) ( ) ,V x t t x t w   (28) 

 2 ( ( ), ) ( ) ,
t

c
t

V x t t N x d w   (29) 

where: maxc i
i I

N N . 

It is clear that ( 0) 0V t  . 

The right Dini derivative of ( ( ), )V x t t  along the trajectory of 

(10) yields: 

1 2
(10) (10) (10)

( ( ), ) ( ( ), ) ( ( ), )D V x t t D V x t t D V x t t  

 (30) 

where: 

 1
(10)

( ) ( )
( ( ), ) , sgn( ( )) ,

d x t d x t
D V x t t w x t w

dt dt

 (31) 
and  

 
1sgn ( )

sgn( ( ))

sgn ( )n

x t

x t

x t

  (32) 

Then 

1
(10)

1

*

1

*

( ( ), ) ( ) sgn( ( )) ( ) ( ) ,

( ) ( ) ( ) ,

( ) ( ) ,

N

i i i

i

N

i i i

i

c c

D V x t t t x t M x t N x t w

t M x t N x t w

M x t N x t w

      (33) 

where: 
*maxc i

i I
M M . 

On the other hand, we have: 

 1
(10)

( ( ), ) ( ) ( ) ,cD V x t t N x t x t w   (34) 

The sum of (34) and (33) gives: 
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 *

(10)
( ( ), ) ( ) , ( ) ,c c cD V x t t M N x t w T x t w   (35) 

Knowing that: 

 ( ) , , ( ) ,T
c cT x t w T w x t   (36) 

and if we assume that cT  is the opposite of an M -matrix, we 

can find a vector 
*n

 ( 0l   1,..,l n ) satisfying the 

relation: T
cT w , 

*nw . 

Finally, we get: 

 
(10)

1

( ( ), ) , ( ) , ( )

( ) 0

T
c

n

l l

l

D V x t t T w x t x t

x t 

  (37) 

Hence, the common pseudo-overvaluing matrix for all the 

subsystems is constructed as follows:  

 

1 1

*

1 1

,1 , 1 ,

maxc i i
i I

n n

c c n c n

T M N

t t t

  (38) 

with ,c jt , 1,.., 1j n  are defined in (18). 

Consequently, a sufficient condition ensuring the asymptotic 

stability of the switched system (6) under arbitrary switching 

is: 

 
1

1

, ,

1

0
n

c n c j j j

j

t t   

This completes the proof of theorem 2. 

Remark. Suppose that for an index maxi i , 
maxc iT T  

which is traduced by the fact that one of the individual 

comparison systems overvalues the rest of the subsystems. In 

this case and under some further conditions, the theorem can 

be simplified by the following corollary. 

 

Corollary. System (6) is asymptotically stabilizable via the 

state feedback control law (3) under an arbitrary switching 

rule ( )t i , i I , if there exist j , 1,..., 1j n , 

j q  j q  such that the following inequality is satisfied: 

 max max( ) 0 and ( ) 0i j j i j jP Q   

 max, 1 0i nk   

 max,0 max,0 0i ia k   

Proof. For maxi i , condition (26) can be rewritten as: 

 
1 1

1 1

max, max, 1 max, max,

1 1

0
n n

i n i n j i j j j i j j

j j

k

 (39) 
If in addition, max ( ) 0i j jP , max ( ) 0i j jQ  and 

max, 1 0i nk , equation (39)becomes: 

 
1 1

1 1

max, max, max, 1 max,

1 1

0
n n

i n j i j j i n j i j j

j j

k

   (40) 
Knowing that: 

 
1

1 max

max, max, 1
11

1

(0)

( )

n
i

i n j i j j n
nj

j

j

P
  (41) 

and  

 
1

1 max

max, 1 max, 1
11

1

(0)

( )

n
i

i n j i j j n
nj

j

j

Q
k   (42) 

it follows that: 

 
max max(0) (0) 0i iP Q   (43) 

Finally, the stability condition is reduced to: 

 max,0 max,0 0i ia k   (44) 

This achieves the proof of the corollary. 

 

IV. ILLUSTRATIVE EXAMPLE 

Consider a switched system composed of two second-

order subsystems as described by the following differential 

equation:
2 1 2 1

(2) ( ) ( )

, ,

1 0 1 0

( ) ( ) ( ) ( ) ( ) 0j j

i i j i i j

i j i j

y t t a y t t k y t   

or equivalently by the matrix form: 

 
2

1

( ) ( ) ( ) ( )i i i

i

x t t A x t BK x t   

where: 

 1 1

1,0 1,1

0 00 1

8 10
A BK

k k
  

 2 2

2,0 2,1

0 00 1

3 7
A BK

k k
  

A change of base of matrices 1A , 2A , 1BK  and 2BK  into the 

arrow form leads to the new state space representation: 

 
2

1

( ) ( ) ( ) ( )i i i

i

z t t M z t N z t   

where: 
2

1,1

1,2

10 8

10
  

2

2,1

2,2

7 3

7
  

1,1 1,1 1,0

2,1 2,1 2,0

k k

k k
  

For an arbitrary choice of 1  (hence 1 ), we have: 
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 1 1

1,0 1,1 1,1

0 01 1

1 9
M N

k k k
  

 2 2

2,0 2,1 2,1

0 01 1

3 6
M N

k k k
  

Notice that, in this case, we can use the corollary if:  

1,1 1,0

2,1 2,0

0

0

k k

k k
  

According to the corollary, to check the stability of each 

subsystem individually, it suffices to choose 1,0k  and 2,0k  such 

that: 

1,0

2,0

8 0

3 0

k

k
  

If in addition, we have: 

2,0 2,1 1,0 1,1

2,1 1,1

2

3

k k k k

k k
  

then, we can conclude that 2

2,0 2,1 2,1

1 1

3 6
T

k k k
 is a 

common candidate pseudo-overvaluing matrix for both 

subsystems. Thus, we can derive the following sufficient 

asymptotic stability conditions for the switched system: 

1,1 1,0

2,1 2,0

2,0 2,1 1,0 1,1

2,1 1,1

0

0 3

2

3

k k

k k

k k k k

k k

  

For example, if we take 2,1 1k  and 2,0 2k , the obtained 

conditions become: 

1,1

1,0 1,1

0 4

0 3

k

k k
  

When we apply the theorem, stability domain is larger and the 

stability condition is written as: 

2,1 2,0 2,1

2,0 2,1 1,0 1,1

2,1 1,1

3

2

3

k k k

k k k k

k k

  

Figure 1 shows the stability domain obtained when applying 

the corollary whereas figure. 2 shows that obtained when 

applying the theorem. 

 

Fig. 1 Stability domain (according to the corollary) 

 

 

Fig. 2 Stability domain (according to the theorem) 

V. CONCLUSION 

Through this paper, we have proposed to study the 

stabilization by state feedback control of linear continuous-

time switched systems. The approach is convenient for the 

case of arbitrary switching and provides simple algebraic 

delay-independent stability criteria. This method is 

particularly interesting when we deal with nonlinear systems. 

In fact, the choice of representing the system under the arrow 

form matrix is well appropriate to this case since it permits to 

isolate nonlinear elements in the last row or column, and thus 

makes the derivation of stability conditions easier. 

REFERENCES 

[1] Z. Sun and S. S. Ge, Switched linear systems-control and design, 

Springer, 2005. 

[2] Z. Sun, “Robust switching of discrete-time switched linear systems,” 
Automatica, vol. 48, no. 1, pp. 239-242, 2012. 

[3] D. Liberzon, Switching in systems and control, Boston, MA: 

Birkhaüser, 2003. 
[4] D. Liberzon and A. S. Morse, “Basic problems in stability and design of 

switched systems,” IEEE Control Systems Magazine, vol. 19, no. 5, pp. 

59-70, October 1999. 
[5] J. Hespanha and A. S. Morse, “Stability of switched systems with 

average dwell-time,” Proc. of the 38th IEEE Conf. Decision and Control, 

pp. 2655-2660, 1999. 

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608



6 

 

[6] D. Liberzon, J. Hespanha and A. S. Morse, “Stability of switched linear 
systems: A Lie algebra condition,” Systems and Control Letters, vol. 

37, no. 3, pp. 117-122, 1999. 

[7] H. Lin and P. Antsaklis, “Stability and stabilizability of switched linear 
systems: A short survey of recent results,” IEEE Int. Symp. on 

Intelligent Control, vol. 1, pp. 24-29, 2005. 

[8] D. Z. Cheng, “Stabilization of planar switched systems,” Systems & 
Control Letters, vol. 51, no. 2, pp. 79-88, 2004. 

[9] T. Mori, N. Fukuma and M. Kuwahara, “Simple stability criteria for 

single and composite linear systems with time delays,” Int. J. of Control, 
vol. 34, no. 6, pp. 1175-1184, 1981. 

[10] J. P. Richard, “Time-delay systems: an overview of some recent 

advances and open problems,” Automatica, vol. 39, pp. 1667-1694, 
2003. 

[11] A. Nawel, M. Kermani and A. Sakly, “On the stability and stabilization 

of discrete-time TS fuzzy switched systems,” Proc. 3rd Int. Conf. 
Automation, Control, Engineering and Computer Science (ACECS’16), 

vol. 13, pp. 772-778. 

[12] A. Sakly and M. Kermani, “Stability and stabilization for a class of 
switched nonlinear systems via vector norms approach,” ISA Trans., vol. 

57, pp. 144-161, July 2015. 

[13] M. Kermani and A. Sakly, “Robust stability and stabilization studies for 
uncertain switched systems based on vector norms approach,” Int. J. of 

Dynamics and Control, vol. 4, no. 1, pp. 76-91, August 2014. 

[14] M. Kermani and A. Sakly, “Delay-independent stability criteria under 
arbitrary switching of a class of switched nonlinear time-delay systems,” 

Advances in Difference Equations,” pp. 1-20, 2015. 

[15] M. Kermani and A. Sakly, “On stability analysis of discrete-time 
uncertain switched nonlinear time-delay systems,” Advances in 

Difference Equations, 2014. 

[16] M. Kermani and A. Sakly, “Stability analysis of switched nonlinear 
time-delay systems,” Systems Science&Control Engineering: An Open 

Access Journal, vol. 2, no. 1, pp. 80-89, 204. 

[17] P. Borne, Nonlinear system stability: Vector norm approach system and 
control, Encyclopedia, t. 5, pp. 3402-3406, 1987. 

[18] M. Benrejeb, D. Soudani, A. Sakly and P. Borne, “New discrete 

Tanaka-Sugeno-Kang fuzzy systems characterization and stability 
domain,” Int. J. of Computer, Communication and Control, pp. 9-19, 

2006. 
[19] M. Benrejeb, A. Sakly, K. Ben Othman and P. Borne, “Choice of 

conjunctive operator of TSK fuzzy systems and stability domain study,” 

Mathematics and Computers in Simulation, vol. 76, pp. 410-421, 2008. 
[20] M. Benrejeb, M. Gasmi and P. Borne, “New stability conditions for TS 

fuzzy continuous nonlinear models,” Nonlinear Dynamics and Systems 

Theory, vol. 5, no. 4, pp. 369-379, 2005. 
[21] M. Benrejeb, P. Borne and F. Laurent, “Sur une application de la 

représentation en flèche à l’analyse des processus,” Rairo 

Automatique/Systems Analysis and Control, vol. 16, pp. 133-146, 1982. 

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608




