
Implementation of real time edge detection system for
HD video on Zynq

Haythem AMEUR1, Abdelhamid HELALI1, Hassen MAAREF1, Anis YOUSSEF2
1 Laboratory of Micro-Optoelectronic and Nanostructure, University of Monastir

 Tunisia, Monastir

 2 TELNET Innovation Labs Tunisia, Tunis

ameur_haythem@yahoo.com

Abstract— Several image processing applications (edge detection,

feature extraction, tracking, pattern recognition …) are so

computationally and software solutions cannot meet the real-time

requirements [1, 2]. In this work, we highlight a new and simple

process to implement a real time edge detection enhancement

algorithm on heterogeneous platforms. The implemented design

extracts discontinuities in intensity from an HD video (1080x1920

pixels) at 60 fps. The architecture was designed in Matlab

Simulink. The hardware IP core was generated with HDL coder,

then packaged and implemented in an embedded platform (Zc702)

with Xilinx Vivado environment. The experimental results show

an accurate edge detection that satisfy the requirement of the real-

time constraints.

Keywords—Real time; Edge detection; HDL coder; Zynq

I. INTRODUCTION

Edge detection is one of the most important elements in
image analysis. It has a significant role in many applications and
gives information as a precursor step particularly for
segmentation, feature extraction and object recognition. Usually
edge detection operators are Roberts, Sobel, Laplacian, Prewitt,
Canny, etc [3]. Such operators detect image edge by calculating
the gradient in several directions and they require high
computation power. Therefore, to solve this problem, hardware
implementation is essential which offers much greater speed
than software implementation [4]. With new high-resolution
standards, edge detection operators must receive input data at a
rate up to 3 Giga samples per second. For example, the HD video
standard (1080x1920 p) requires 60 fps, with approximately 2.1
megapixel per frame, and 126 megapixel per second resulting a
data rate of 3 Gigabit per second using uncompressed RGB
encoding [5].

On the other hand, Field Programmable Gate Array (FPGA)
are becoming more and more attractive for image processing
applications, due to its potential to have parallel and high
computational density as compared to a general purpose
microprocessor. In our application, a single FPGA with an
embedded soft processor (ARM Cortex-A9) can deliver the
requisite level of computing power. It can be made with larger
flexibility and simplified board complexity. In fact, the
generated IP core is designed to be connected to the ARM
processor on a Zynq device through the AXI ports (see Fig 1).

Fig. 1 Zynq architecture

It allows the user to change the threshold value, or to enable and
disable the edge detection operator in real time.

The rest of the paper is organized as follows. In Section II we
present the architecture of the edge detection unit. Experimental
results and hardware implementation are addressed in section
III. Section V Concludes this work.

II. EDGE DETECTION UNIT ARCHITECTURES

1. Derivative mask

According to the experimentation in [6, 7] the use of a simple
derivative mask centered [-1, 0, 1] turns out to be the best results
for the histograms of oriented gradients (HOG) descriptor.
Since, so far, we are interested in implementing the HOG
descriptor, we will present in this paper a kind of parallel
processing of a simple derivative masks in the horizontal and
vertical directions. Equations are presented below:

  ),(1,0,1),(yxIyxdx  (1)

  ),(1,0,1),(
'

yxIyxdy  (2)

),(),(),(yxdyyxdxyxM  (3)

Where, dx(x,y), dy(x,y) and M(x,y) represent respectively
the horizontal gradient, the vertical gradient and the magnitude
of pixel.

This process can quickly get the result of one pixel in only
one clock period. In addition, it does not only meet the real-time
requirements, but also gives the programmer the possibility to
implement some other serial images processing like the
magnitudes computation, gradients orientations computation,
histograms distributions…

The edge detector IP core was established in Matlab
Simulink environment. This tool allows the user to drive the

PC
Typewriter
ISSN: 2356-5608

PC
Typewriter
Proceedings of Engineering & Technology (PET)

PC
Typewriter
pp. 41-45

PC
Typewriter
Copyright IPCO-2016

User1
Typewritten Text
3rd International Conference on Automation, Control, Engineering and Computer Science (ACECS'16)

User1
Typewritten Text

Zynq programmable logic (PL) part at a high level without
having to deal with low level hardware details. The model is
designed to detect edges by using 1-D image filters in the
vertical and horizontal orientations. The proposed architecture is
shown in Fig 2.

Fig. 2 1-D image derivative masks

The outputs x-filter and y-filter represent respectively the
horizontal and vertical gradients. The two filters are separable
and can be decomposed, which makes its hardware
implementation efficient. The incoming pixels are shifted
through two line buffers (1920 pixels each line) for vertical
direction and three sample buffers for the horizontal direction.
This mechanism creates several delays that feed the filter array
simultaneously with the relevant pixels from the video stream.

2. Local Minimum search

Known the high resolution used in HD standard, one edge
presented in the image can be coded on successive dozen of
pixels (see Fig. 3). Consequently, classical edge detector will
result continuities in strong edges that will dominate the visual
appearance. To resolve this problem, we proposed to search a
local minimum gradient for each four successive pixels in both
x and y directions just before the magnitude’s calculation step.
Fig. 3 presents the architecture of our added block.


(a)


(b)


Fig. 3 Local minimum search: (a) Local minimum search in horizontal
direction, (b) Local minimum search in vertical direction

 This process alleviates problems associated with edge
continuities by identifying strong edges, and preserving the
relevant weak edges. It can be also delete the higher noise
distributed in random positions in mage. Results are showed in

Fig 5. Performances being compared the traditional edge
detection algorithm and it was observed that the outputs of this
algorithm provide much more distinct marked edges and
reduced noise, thus it have better visual appearance.

3. Overall system

The overall system of the edge detector is composed of three
steps; Gradients calculation, magnitude calculation & local
minimum search and binary segmentation based on flexible
threshold that can be defined by the user. The structure of the
overall system is presented in the following figure (Fig 4).


Fig. 4 Overall system of the edge detector

Once vertical and horizontal gradient values are determined,

each pixel gradient is compared to the value of their four

neighboring gradients. Pixel with gradient intensity less than

their neighboring will automatically replace all others, in order

to keep the edges thin and suppress the higher noise if it is

present. The final stage consists in thresholding the addition

between the two local minimum search stages and create a

binary image.

III. HARDWARE IMPLEMENTATION

In this section, we describe the hardware implementation of

our proposed distributed edge detection algorithm on the Xilinx

zynq device. Based on HDL work flow advisor, we have chosen

the AXI interfaces connecting the IP core to the embedded

processor ARM 9. Then we have generated HDL codes from

the Simulink blocks. Tow interfaces are used: the AXI stream

interface to handle the input output stream pixels and AXI lite

interface to adjust the parameters of the edge detector IP core.

Therefore, with Vivado IP integrator [8], we have packaged

and integrated the generated IP core. To guarantee the

acquisition and the display of pixels from and to the external

word, two IP cores are added. They are respectively; FMC

IMAGEON HDMI input module and FMC IMAGEON HDMI

output module [9].

In Fig. 6 we show the experimental result of our real time
edge detection system. An HD video delivered through the
integrated HDMI port from laptop to the Zynq Zc702 platform.
After all processing steps, the output video is displayed to the
LCD monitor.

Fig. 6 Experimental result

 The device utilization summary of the whole system and the
edge detector IP core are given respectively in Table. I and table
II. Small resource is taken up, so there is a possibility to
implement more processes with this architecture on the same
device. The system clock frequency is 150 MHz. The whole
system of the edge detection can be extracted in less than 5 ns

for a single pixel. Therefore, the implemented system requires
(1920*1280*5) 12.288 ms to process one single HD frame and
(12.288*60) 0.73728 s to process 60 frames. The result
indicates that our implemented system can handle 80 frame/s if
a camera with higher frame rate is available.

TABLE I . RESOURCE UTILIZATION OF THE WHOLE SYSTEM

Resource Utilization Available Utilization%

FF 6075 106400 6

LUT 4878 53200 9

Memory LUT 388 17400 2

I/O 39 200 20

BRAM 5 140 4

DSP48 18 220 8

BUFG 3 32 9

TABLE II. RESOURCE UTILIZATION OF THE EDGE DETECTOR IP

CORE

Resource Utilization Available Utilization%

FF 764 106400 1

LUT 579 53200 1

Memory LUT 32 17400 2

BRAM 3 140 3

Fig. 5 Experimental results: (a) Original image, (b) Edge detection by traditional algorithm, (c) Edge detection by improved algorithm

Resource Utilization Available Utilization%

DSP48 13 220 1

BUFG 0 32 0

IV. CONCLUSION

This paper discussed the implementation of the edge-
detection algorithm on a heterogeneous platform. Performance
analysis indicate a significant speedup and show the capability
of supporting adaptive edge detection for real-time image
processing. Future work will involve more complex image
processing algorithms into the Zynq device.

ACKNOWLEDGMENT

This work was supported by the Project of Support System
for Research and Innovation (PASRI), Tunisia.

REFERENCES

[1] Donald. L. Hung, Heng-Da Cheng, and Savang Sengkhamyong, “Design

of a Hardware Accelerator for Real-Time Moment Computation: A

Wavefront Array Approach ”, IEEE TRANSACTIONS ON
INDUSTRIAL ELECTRONICS, VOL. 46, NO. 1, pp. 207 - 218, 1999.

[2] Xin Yuanfang and Sun Xia, “System Design for Real-time Image
Processing Based on Multi-core DSP”, JOURNAL OF NETWORKS,
VOL. 9, NO. 11, pp 3143 – 3149, 2014.

[3] “Effects of noise on various edge detection techniques”, International
Conference on Computing for Sustainable Global Development
(INDIACom), pp 827 - 830, 2015.

[4] Mahesh Prasanna, Shantharama Rai, “Image Processing Algorithms - A
Comprehensive Study” International Journal of Advanced Computer
Research Volume - 2 Issue 15 June –pp 2277 – 7970, 2014.

[5] https://en.wikipedia.org/wiki/1080p

[6] N. Dalal and B. Triggs “Histograms of Oriented Gradients for Human
Detection,” Proceedings of the 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), Vol. II, pp.886-
893, 2005.

[7] Haythem AMEUR, Abdelhamid HELALI, Mohsen NASRI, Hassen
MAAREF, “Improved feature extraction method based on Histogram of
Oriented Gradients for pedestrian detection”, Computer & Information
Technology (GSCIT), 1 – 5, 2014.

[8] http://www.xilinx.com/products/design-tools/vivado/integration.html

[9] http://www.em.avnet.com/en-us/design/drc/Pages/HDMI-Input-Output-
FMC-module.aspx

https://en.wikipedia.org/wiki/1080p
http://www.xilinx.com/products/design-tools/vivado/integration.html
http://www.em.avnet.com/en-us/design/drc/Pages/HDMI-Input-Output-FMC-module.aspx
http://www.em.avnet.com/en-us/design/drc/Pages/HDMI-Input-Output-FMC-module.aspx

