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Abstract—This study focuses on synchronization of kinemati-
cally redundant robot manipulators in task space under the ef-
fects of parametric uncertainty and time-varying communication
delay. We consider as joint and/or end-effector velocities are not
measurable and to overcome this problem we propose a linear-
filter, which has a model-free structure. It is assumed that the
position error and linear-filter output signals are shared over a
directed communication topology under the effect of time-varying
communication delay to guarantee the end-effector synchroniza-
tion between robot manipulators. Control objectives are achieved
by proposed output-feedback (OFB) robust controller and with
the help of a combination of Lyapunov and Krasovskii stability
analysis, we reach to a uniformly ultimately bounded result
for both tracking and synchronization error signals. Finally, we
present the simulation results on a system with 3 three-link planar
robot manipulators to validate the feasibility of the suggested
controller mechanism for synchronization.

I. Introduction

Design of general control structures for the use of robot

manipulators in industrial applications has been an active and

challenging research area in control engineering for many

years. In parallel to the recent technological developments

and appearance of new technologies, the size and scope of

industrial applications are also drastically changing. Given

the requirements in this area, it is clear that a single robot

manipulator will not suffice for the required tasks such as

assembly, welding, painting or transportation. For this reason,

it is necessary to provide coordination of multiple robot manip-

ulators with the use of communication structures so that they

can perform a pre-planned task in a collaborative manner. The

coordinated control structure to be designed must ensure that

the end-effectors of the robot manipulators in operation are

synchronized before reaching to a desired trajectory and track

the trajectory simultaneously. Besides, manipulator trajectories

for specific tasks to be performed are usually designed in task

space by using the position that the end-effectors of the robot

manipulators are to be located.

Also, redundancy in the manipulator structure, i.e. the

structure that the dimension of link position variables n is

greater than the dimension of operation space m, has an

important role on dexterity [1].

In literature, most of the recommended control structures

need velocity measurements of joints and/or end-effectors, be-

side their positions. The velocity sensors used for this purpose

are generally expensive and give noisy measurements, that

may affect the system, negatively. Another subject that needs

to be discussed about synchronization is the time delay caused

by communication during the information sharing between

robot manipulators. There are several proposed controllers

assuming that there exist constant and bounded time delays,

in literature. Considering a real communication system, it can

not be expected that the time delay in the whole system has

the same value during the operation or the time delay value

between each agent is the same [2].

In [3], the leader-follower synchronization was provided

by the velocity signal obtained from an virtual agent with

the assumption of exact model knowledge. In [4] and [5],

global asymptotic synchronization was guaranteed by using

an adaptive control structure. Also, in [5], time-varying com-

munication delay and redundancy were taken into consider-

ation. Under the assumption of measurable joint velocities

in [6] and [7] adaptive based controllers were suggested for

directed communication topology with constant time-delay.

Recently, Phukan and Mahanta suggested in [8], a full-state

feedback sliding mode controller for the synchronization of

non-redundant robot manipulators.

In this work, we purpose a comprehensive solution for OFB

synchronization of robot manipulators in task space. For the

replacement of velocity error, inspired by [9], a linear-filter

is designed. With the help of the surrogate signal generated

by linear-filter, trajectory tracking problem of each agent is

solved without measuring joint and/or end-effector velocities.

To overcome the parametric uncertainty of dynamic model, we

suggested a robust controller. It is assumed that the position

error and linear-filter output signals are shared over a directed

communication topology under the effect of time-varying com-

munication delay to guarantee the synchronization between

robot manipulators. Also, redundancy problem is taken into

consideration. Performing a combination of Lyapunov and

Krasovskii stability analysis, we reach to a uniformly ulti-

mately bounded result for both tracking and synchronization
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error signals. Finally, we present the simulation results on a

system with 3 three-link planar robot manipulators to validate

the feasibility of the suggested robust OFB control structure

for synchronization.

II. Notations and Mathematical Prelimineries

The Euler-Lagrange based formulation of dynamic model

for n-link, revolute, direct drive robot manipulator is given by

the following form [10]

M(q)q̈ + C(q, q̇)q̇ + Fdq̇ + G(q) = τ (1)

Due to page limitation, readers are referred to see:

• [10], [11] for the properties of given model and signals

in (1),

• [12], [13] for the properties of Jacobian matrix J(q),

pseudo-inverse Jacobian matrix J+(q) and their relation

with task-space.

III. Output Feedback Task-Space Synchronization

A. Problem Definition

In this study we focused on the end-effector position

synchronization of multiple robot manipulators, while each

of them follows the given desired trajectory. To ensure the

tracking goal for each robot manipulator in the system with

the dynamical model given in (1), the position tracking error

ei(t) ∈ R
m (i ∈ S , {1, .., N}) is defined as

ei = xdi − xi (2)

where xi(t) ∈ R
m stands for actual position and xdi(t) ∈ R

m

symbolizes the desired trajectory given to the robot manipu-

lators.

B. Linear-filter Design

Since we assumed that joint and/or end-effector velocities

are not measurable, based on the subsequent stability analysis,

we design a linear-filter rfi ∈ R
m as

rfi = pi − (k1i + 1)ei (3)

where pi(t) ∈ R
n is an auxiliary variable with the dynamic

equation

ṗi = −(k1i+1+α)pi+((k1i+1)2+α(k1i+1)−(k1i+1)+k2i)ei−efi.
(4)

In the given equation, k1i, k2i ∈ R
nxn, α ∈ R

1 are positive

constant gains and α is same for all agents. efi(t) is an

auxiliary variable with the following dynamics

ėfi = −k3iefi + rfi (5)

with a positive constant gain k3i ∈ R
nxn. Dynamics of (3)

can be presented as,

ṙfi = −αrfi − (k1i + 1)Ji(qi)ηi + k2iei − efi (6)

where ηi(t) ∈ R
n is an auxiliary signal as follows

ηi = J+

i (qi)(rfi +ei + ẋdi)+(In −J+

i (qi)Ji(qi))gi − q̇i. (7)

Given vector function g(.) ∈ R
n is the sub-task function,

that is chosen according to pre-defined sub-task, e.g. joint

limitation, manipulability, obstacle avoidance, etc. If we define

sub-task error as eN = (In − J+

i (qi)Ji(qi))(gi − q̇i) it is easy

to show that eN = (In − J+

i (qi)Ji(qi))ηi which means we

can regulate eN as long as we can regulate ηi. For further

information the reader is referred to [12], [13]. From this point,

for ease of presentation we will use the notation

zi = J+

i (qi)(rfi + ei + ẋdi) + (In − J+

i (qi)Ji(qi))gi.
(8)

Also we can define the time derivative of position error as

ėi = Ji(qi)ηi − rfi − ei and the joint velocity as q̇i = zi − ηi.

C. Error System Development

To obtain the dynamic formulation for error system, we take

the time derivative of (7), multiply both sides with Mi(qi),

substitute (6), ėi and use q̈i from E-L model given in (1), we

yield to the open loop dynamics as

Miη̇i =Ci(qi, q̇i)q̇i + Fdiq̇i + Gi(qi) − τi + Wi(qi)q̇i

+Mi(qi)J
+

i (qi)
(

− (α + 1)rfi − k1iJi(qi)ηi

+ (k2i − 1)ei − efi + ẍdi

)

(9)

with Wi(qi) ∈ R
nxn

Wi(qi)q̇i =Mi(qi)
(

J̇+

i (qi)(rfi + ei + ẋdi)

+ (−J̇+

i (qi)Ji(qi) − J+

i (qi)J̇i(qi))gi

+ (In − J+

i (qi)Ji(qi))ġi

)

. (10)

By using the definition given for q̇i and Property Ci(qi, ςi)ν =
Ci(qi, ν)ςi, we reformulate the open-loop error dynamics as

Mi(qi)η̇i = − Mi(qi)J
+

i (qi)k1iJi(qi)ηi − Ci(qi, q̇i)ηi

− Fdiηi − Wi(qi)ηi − Ci(qi, ηi)zi − τi + Yiθi

(11)

where Yiθi ∈ R
n is a linear parameterization of

Yiθi =Ci(qi, zi)zi + Fdizi + Gi(qi) + Wi(qi)zi

+Mi(qi)J
+

i (qi)
(

− (α + 1)rfi

+ (k2i − 1)ei − efi + ẍdi

)

. (12)

denoting Yi(xdi, ẋdi, ẍdi, xi, qi, ei, efi, rfi, gi) ∈ R
nxr the

regression matrix and θi ∈ R
r system parameters, e.g. mass,

intertia, friction coefficients. Based on the subsequent stability

analysis, we design the controller as follows

τi =Yiθ̂i + JT
i (qi)

(

− γi(k1i + 1)rfi + γik2iei

+ Γi‖Yi‖
2(rfi + ei) +

∑

j∈Si

δijτsyn

)

(13)

with synchronization part τsyn

τsyn =k4ij(ei(t) − ej(t − Tij(t)))

− (k1i + 1)k5ij(rfi(t) − rfj(t − Tij(t))) (14)
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In (13), θ̂i stands for the constant estimated values of system

parameters. First three terms in pharantesis are for tracking

problem of each robot manipulator, with the nonlinear damp-

ing term ‖Yi‖
2(rfi + ei). δij given in (13), symbolizes the

communication among agents in the system, i.e. δij = 1 if

agent i receives information from agent j, otherwise δij = 0,

and Si is a subset of S containing all agents that send informa-

tion to agent i. Terms in τsyn ensure the position synchroniza-

tion as well as the velocity synchronization between agents,

respectively. The signals ej(t − Tij(t)) and rfj(t − Tij(t))
represent time-varying delayed position error signals and sur-

rogate velocity error signals transferred over communication

links. Based on the subsequent Lyapunov-Krasovskii [14]

stability analysis, the time-varying delay Tij(t) is a contin-

uously differentiable function and Ṫij(t) = dij < 1 . Given

Γi, γi, k2i, k4ij , k5ij ∈ R
mxm are the positive and diagonal

control gain matrices.
By substituting the control law (13) into (11), we obtain the

closed loop dynamics for ηi(t) as

Mi(qi)η̇i = − Mi(qi)J
+

i (qi)k1iJi(qi)ηi − Ci(qi, q̇i)ηi

− Fdiηi − Wi(qi)ηi − Ci(qi, ηi)zi + Yiθ̃i

− J
T
i (qi)

(

− γi(k1i + 1)rfi + γik2iei

+ Γi‖Yi‖
2(rfi + ei) +

∑

j∈Si

δijτsyn

)

(15)

D. Stability Analysis

Theorem 1: Considering a system, that consists of N robot

manipulators with the dynamic structure in (1), the filter

structure of (3), (4), (5) and the OFB robust controller given

by (13), guarantee uniform ultimate boundedness of tracking

and synchronization errors in the sense that

‖y(t)‖ ≤
√

λmax

λmin
‖y(0)‖2exp(−Kt) + λmax

4ΓKλmin
‖θ̃‖2(1 − exp(−Kt))

where

yi(t) =
[

ηi(t)
T rfi(t)

T efi(t)
T ei(t)

T esyn(t)T
]T

and

esyn(t) =

[

δij(ei(t) − ej(t − Tij(t)))T

δij(rfi(t) − rfj(t − Tij(t)))T

]

with

λ1i =
1

2
min

{

m1i, λmin{γi}, λmin{k2i},

λmin{k4ij}, λmin{k5ij}
}

λ2i =
1

2
max

{

m2i, λmax{γi}, λmax{k2i},

λmax{k4ij}, λmax{k5ij}
}

. (16)

In (16), m1i and m2i symbolize the lower and upper bounds
of ‖Mi(qi)‖, respectively. All closed-loop signals remain

TABLE I: Robot Parameters and Controller Gains

Parameters & Gains Robot 1 Robot 2 Robot 3

p1 0.4752 [kg.m2] 0.32 [kg.m2] 0.5666 [kg.m2]
p2 0.12 [kg.m2] 0.0819 [kg.m2] 0.1594 [kg.m2]
p3 0.108 [kg.m2] 0.0725 [kg.m2] 0.1442 [kg.m2]
β1 1.2684 [kg.m2] 0.8528 [kg.m2] 1.4993 [kg.m2]
β2 0.3884 [kg.m2] 0.2587 [kg.m2] 0.485 [kg.m2]
β3 0.045 [kg.m2] 0.0304 [kg.m2] 0.0626 [kg.m2]
fd1 5.3 [Nm.s] 4.6 [Nm.s] 4.8 [Nm.s]
fd2 2.4 [Nm.s] 1.9 [Nm.s] 1.6 [Nm.s]
fd3 1.1 [Nm.s] 0.8 [Nm.s] 1.2 [Nm.s]
l1 0.2 [m] 0.3 [m] 0.25 [m]
l2 0.25 [m] 0.3 [m] 0.35 [m]
l3 0.25 [m] 0.3 [m] 0.25 [m]

k1i 0.5,0.5 0.5,0.5 0.5,0.5

k2i 2,2 2,2 2,2

k3i 50,50 50,50 50,50

k4ij 35,35 35,35 35,35

k5ij 60,60 60,60 60,60

γi 3,3 3,3 3,3

Γi 0.01,0.01 0.01,0.01 0.01,0.01

α 15 15 15

Fig. 1: Communication Topology.

bounded, as long as the positive gains satisfy following
conditions

α =
k6ij

λmin{k5ij}
+

λ2
max{k1j + 1}(1 − dij)

4λmin{k5ij}

+
λ2

max{k2i}

λmin{k5ij}
+

λ2
max{k2j}(1 − dij)

4λmin{k5ij}d2
ij

+
λ2

max{k5ij}(1 − dij)

4λmin{k5ij}

λmin{k1i} > ζC2i
‖zi(0)‖ + Γi(‖Yi‖

2 + ‖Yi‖
4) +

∑

i∈Sl
δliϑ1li

γi =
k7i

α
+

λ2
max{k4ij}

4α
+

Γi

4α

k2i = k9i

γi
+

λ2

max{k5ij }
4γi

+ Γi

4γi
, k3i = k8i

γi
+

λ2

max{k5ij }
4γi

λmin{k4ij} > 1 +
1 − dij

4
+

(1 − dij)

4d2
ij

+
1

4(1 − dij)

k6ij > 1 +
1

4(1 − dij)
, k7i >

∑

i∈Sl

δliϑ3lid
2
li

k8i >
∑

i∈Sl

δliInxn, k9i >
∑

i∈Sl

δliϑ2lid
2
li

where ϑ1ij = j2
2j(λ2

max{k4ij} + λ2
max{k5ij}),

ϑ2ij = λ2
max{k4ij} + λ2

max{k5ij}, ϑ3ij = λ2
max{k4ij} +

α2λ2
max{k5ij} with the upper bound of ‖Jj(qj)‖ ≥ j2j and

the subindice l stands for other agents in the system, that

receive information from agent i.
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Proof 1: To begin the stability analysis, we define a non-
negative function as

V1(t) =
∑

i∈S

V1i(t)

=
1

2

∑

i∈S

{

η
T
i Miηi + e

T
i γik2iei + e

T
fi

γiefi

+ r
T
fiγirfi

+
∑

j∈Si

δij(ei(t) − ej(t − Tij(t)))T

× k4ij(ei(t) − ej(t − Tij(t)))

+
∑

j∈Si

δij(efi
(t) − efj

(t − Tij(t)))T

× k5ij(rfi(t) − rfj(t − Tij(t)))

}

(17)

that can be upper and lower bounded as λ1i‖yi‖
2 ≤ V1i ≤

λ2i‖yi‖
2 Differentiating (17) with respect to time and substi-

tuting (6), (5), ėi, (15) with some algebraic manipulations we
obtain

V̇1(t) ≤

N
∑

i=1

{

−
[

m1ij1ij
+

1iλmin{k1i}
]

‖ηi‖
2

+
[

‖zi(t) + Γi(‖Yi‖
2 + ‖Yi‖

4)
]

‖ηi‖
2

+
1

4Γi

‖θ̃i‖
2 − k7i‖rfi‖

2 − k8i‖efi‖
2 − k9i‖ei‖

2

−
∑

j∈Si

δij

[

λmin{k4ij} −
(

1 +
1 − dij

4
+

(1 − dij)

4d2
ij

+
1

4(1 − dij)

)]

‖ei(t) − ej(t − Tij(t))‖2

−
∑

j∈Si

δij

[

k6ij − (1 +
1

4(1 − dij)
)
]

× ‖rfi(t) − rfj(t − Tij(t))‖2

+
∑

j∈Si

δij(1 − dij)ϑ1ij‖ηj(t − Tij(t))‖2

+
∑

j∈Si

δijd
2
ij(1 − dij)ϑ2ij‖ej(t − Tij(t))‖2

+
∑

j∈Si

δij(1 − dij)‖efj(t − Tij(t))‖2

+
∑

j∈Si

δijd
2
ij(1 − dij)ϑ3ij‖rfj(t − Tij(t))‖2

}

. (18)

where j1i and j+

1i are lower bounds of ‖Ji(qi)‖ and ‖J+

i (qi)‖,
respectively. To analyze the stability of last four terms indi-
cating time-delay, we define a Lyapunov-Krasovskii functional
as

V2(t) =
∑

i∈S

{

V1i(t) +
∑

j∈Si

δijϑ1ij

∫ t

t−Tij

η
T
j (ω)ηj(ω)dω

+
∑

j∈Si

δijϑ2ijd
2
ij

∫ t

t−Tij

e
T
j (ω)ej(ω)dω

+
∑

j∈Si

δijϑ3ijd
2
ij

∫ t

t−Tij

r
T
fj(ω)rfj(ω)dω

0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

x−axis [m]
(a)

y−
ax

is
 [m

]

0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

x−axis [m]
(b)

y−
ax

is
 [m

]

Fig. 2: End-effector trajectories (a) Without synchronization

(b) With synchronization.

+
∑

j∈Si

∫ t

t−Tij

e
T
fj(ω)efj(ω)dω

}

(19)

that can be bounded similar as V1i and we can write the upper

bound for V̇2(t) as

V̇2(t) ≤

N
∑

i=1

{

−
[

m1ij1ij
+

1iλmin{k1i}
]

‖ηi‖
2

+
[

‖zi(t) + Γi(‖Yi‖
2 + ‖Yi‖

4) +
∑

i∈Sl

δliϑ1li

]

‖ηi‖
2

+
1

4Γi

‖θ̃i‖
2 −

[

k7i −
∑

i∈Sl

δliϑ3lid
2
li

]

‖rfi‖
2

−
[

k8i − δliInxn

]

‖efi‖
2

−
[

k9i −
∑

i∈Sl

δliϑ2lid
2
li

]

‖ei‖
2

−
∑

j∈Si

δij

[

λmin{k4ij} −
(

1 +
1 − dij

4
+

(1 − dij)

4d2
ij

+
1

4(1 − dij)

)]

‖ei(t) − ej(t − Tij(t))‖2

−
∑

j∈Si

δij

[

k6ij − (1 +
1

4(1 − dij)
)
]

× ‖rfi(t) − rfj(t − Tij(t))‖2

}

. (20)

For the general system, we can reform (20) as

V̇2(t) ≤ −K‖y‖2 +
1

4Γ
‖θ̃‖2 (21)

and we can solve the differential inequality as [15]

‖y(t)‖ ≤
√

λmax

λmin
‖y(0)‖2exp(−Kt) + λmax

4ΓKλmin
‖θ̃‖2(1 − exp(−Kt)).

(22)

From (22), we can conclude that y(t) is bounded as given

in Theorem 1 (i.e. ηi, rfi, ei, efi, esyn ∈ L∞). Under the

assumption that desired trajectory xdi and its derivatives, sub-

task function g(t) and ġ(t) are all bounded, by employing

standard signal chasing arguments, we can say that all signals

remain bounded.

IV. Numerical Studies

The suggested filter-based robust synchronization scheme

was tested in SimulinkTMof MatlabTM, using three 3-link planar
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Fig. 3: (a) Position errors of each robots (b) Synchronization

errors.
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Fig. 4: Joint positions (a) Without subtask function (b) With

subtask function.

robot manipulators with the dynamic model presented in

[16] and parameters given in Table 1. It was assumed that

link lengths are known and the other parameter values were

estimated to be 20%, 30% and 15% for Robot 1,2 and

3 incorrect, respectively. Time-delay values on communica-

tion graph were taken as T1,2 = 0.1 + 0.06sin(t), T2,3 =
0.12+0.05sin(0.5t), T3,1 = 0.15+0.14sin(0.3t). The desired

trajectory of robot manipulators was defined as xdi(t) =
[0.6 + 0.1cos(t) 0.9 − 0.1sin(t)]

T
[m] . The subtask func-

tion g(t) was selected for all robots as g(t) = −2(q3 − q2 +
0.5q1) [1 − 1 1]

T
as given in [13], to obtain the optimum

link configuration is given by (q3 − 0.5q2) = 0.5(q2 − q1).

End-effector positions of robot manipulator are presented

in Figure 2(a) and (b). It is clear that under the effect

of synchronization, end-effectors of robot manipulators meet

before they track to the given desired trajectory. It can be

seen from the Figure 3 that tracking errors of each robot

and synchronization error between them stay in a bound

around zero. Finally, Figure 4 shows that sub-task function

g(t) ensures the optimum link configuration of each robot

manipulator during synchronization and tracking.

V. Conclusion

In this work, we presented a complete solution for cooper-

ative end-effector position synchronization of robot manipu-

lators under the effects of time-varying delay and parametric

uncertainties. We proposed a filter-based OFB robust control

scheme to achieve aforementioned control objectives without

velocity measurement. The proposed structure ensures the syn-

chronization under a directed communication network, with

a uniformly ulimately bounded tracking and synchronization

errors. Future work will be on extending this result to global

asymptotic synchronization.
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