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Abstract—This study deals with the implementation of Kalman
filter for the prediction of stream-flow in Ergene River Basin. In
the study, stream-flow, precipitation and wastewater are chosen
as the state variables during the prediction process since these
parameters are highly effective on the stream-flow. Effects of
precipitation and wastewater are calculated via Soil and Water
Assessment Tool (SWAT) model in the study. Covariance matrices
are calculated by using real-time data with 5 year length and
model performance is tested with short and long-term predictions
based on measurements and the accuracy of the proposed method
is evaluated with Nash-Sutcliffe efficiency coefficient(NS) and root
mean squared error (RMSE).

I. INTRODUCTION

A large number of empirical and analytical models are
available for streamflow forecasting that can be classified
as short, medium and long-term forecasting models [1], [2].
Linear quadratic estimation (LQE) and Kalman filtering are
considered as empirical stochastic models, which combine
the dynamics and probability distribution of the measured
variables in current state for forecasting future ones [3]. Jens et
al. (1985) used Kalman filter for real time operation of surface
water flow by forecasting in stochastic space in rainfall-runoff
model of Mike 11 hydrodynamic model [4]. They discussed
the source of uncertainty and stated that it came from the
precipitation that is the input to rainfall-runoff. Ngan (1986)
compared autoregressive models with Kalman filter based flow
forecasting in his PhD thesis [5]. He showed that Kalman filter
had better reliability in flow prediction compared to ARMAX.
Jean (2004) used it for groundwater level forecasting as well
as rainfall-runoff prediction in Danish Hydraulic Institution
(DHI) [6]. Moradkhani et al. (2005), forecasted one-day ahead
streamflow of the Leaf River watershed by using a dual state
parameter estimation approach based on the Ensemble Kalman
Filter (EnKF) and showed that the results are very consistent
with the observations [7]. Clark et al. (2008) described an
application of the EnKF in which streamflow observations
are used to update the states in a distributed hydrological
model for extracting the source of uncertainty [8]. In another
study similar to their work, Noh et al. (2013) assessed EnKF
and particle filter (PF) with another distributed hydrologic
model and showed that the Kalman filter model is sensitive
for the length of lag time [9]. Rasmussen et al. (2015)

assessed the assimilation of groundwater and streamflow data
in integrated hydrologic model in the size of ensemble and
localization of Kalman filter [10]. They concluded that the
required ensemble size depends heavily on the assimilation of
discharge observations and estimation of parameters as well as
on the number of observed variables. Deng et al. (2016) used
ensemble Kalman filter for identification of temporal variation
of hydrologic parameters in a monthly water balance model
[11]. They used the filter for Wudinghe basin in China and
showed the effectiveness of its detection on storage capacity.

Mathematical models involved in streamflow prediction to
provide more simplistic solutions considering physical ones
require comprehensive geographic and measured data. They
chose a few of hundreds of variables that affect the streamflow
most and dealt with the error caused by linearization and vari-
able ignorance. For this purpose, Kalman Filters are used [12].
They achieved promising results. Later, regression models and
Artificial Neural Networks are added to the methods with their
own approach to the problem and successful predictions [13],
[14], [15]. Today, numerous different methods are used to
predict streamflow or enhance the ones that are already being
used such as Chaos Theory to improve prediction length of
Kalman Filter [16]. Another recent addition to this study area
is wavelets, by adding periodic knowledge to the model, they
increase the accuracy of it [17], [18].

Kalman filter is first proposed by R.E. Kalman [19]. This
method takes observation errors and disturbances into account,
minimizes the modelling errors and its convergence is guar-
anteed. Because of these features, Kalman filter is commonly
used in, but not limited with, aircraft position estimation and
control systems [20], [21]. Chemical processes are other study
areas that prediction accuracy of Kalman filter is frequently
exploited [22]. Also, increasing awareness of global warming
is attracting more attention every year to prediction and
management of water resources [12]. In some cases, Kalman
Filter’s accuracy outperforms other prediction methods [23].

SWAT is used in many studies with the help of its wide
access to environmental data such as soil moisture, snow cover
fraction, streamflow and many more. In its cooperation with
Kalman Filter, generally SWAT is the predicting part and
Kalman Filter is a tool that prepares inputs to the model by
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negating some of the process and measurement noises. Similar
studies are taken part in China and Senegal [24], [25], [26]. In
all cases, Kalman Filter provided significant accuracy increase
and proved its success.

Different from existing literature, in this study, Kalman
filtering method is used for the prediction of streamflow with
the help of SWAT where Kalman Filter is the predicting part
in Ergene River Basin in Turkey. This river basin is located
in the European part of Turkey with about 12,000 square
kilometers of land having mostly very fertile agricultural
fields, 1.2 million of population and seven large organized
industrial zones, all exploited the surface and groundwater
of this watershed. Particularly the northern part of the river
basin is affected by dense industrial regions near Istanbul
metropolitan. Here, the daily data of nine meteorological and
three main hydrometric stations is used for the simulation
studies within the frame of this paper. The prediction and
analysis of stream-flow in the area is carried out via Kalman
filtering method.

Organization in this paper is as follows. In section 2,
we described the study area, its meteorological history and
geological characteristics. In section 3, Kalman filter and its
implementation to the model are explained. In section 4, the
simulation results presented and discussed.

II. MATERIALS

Streamflow is affected by various natural and unnatural
factors. While most of them are taken into account by physical
models during the streamflow prediction stage, mathematical
models tend to restrict the number of system inputs, due to the
increased complexity and computational time requirements.
Along with its advantages, selecting the inputs to be processed
has some disadvantages. Due to removal of some terms in the
equation of the model, accuracy loss that leads to uncertainty
is unavoidable. In addition, removed terms become noise for
the system. Depending on input selection, the equation must
be adjusted with respect to the inputs and noise in order to
minimize the prediction error.

A. Study area

The Ergene River Basin taken as the area of study is in
the European part of Turkey. It is in the Marmara Region and
located in the central part of the Thrace region between 40
39° and 42 05° north latitude and 25 59° and 28 10° east
longitude, as shown in Figure 1. The total area of the Ergene
River Basin is 11,020 km2. The Ergene River originates from
the Istranca Mountains in the northeast of the basin and travel
through east-west direction by collecting various branches
from North and South bank of the river. Dominant land use
in the study area is cropland (76%), and then pasture and
sporadic forest include (18.7%), only 5.3% of study area
occupied by urban and industrial area based on prepared land
use in 2012. There are more than 40 meteorological stations
in the Ergene River Basin with different meteorological data
periods. In addition, there are seven stream gauges in the
Ergene River Basin, three of them are found in the main

river, and two of them are used in this research. The Ergene
River Basin is under the influence of the terrestrial climate; the
northern summers are hot and arid, and the winters are cold
and hard. The Mediterranean climate is dominant in the south
of the basin and the summers are hot and dry, the winters are
warm and rainy. The average annual temperature in Thrace
is 13°C. The highest temperature in Thrace is measured as
44.6°C in Luleburgaz. The lowest temperature in the region
is -17.9°C. The distribution of precipitation within the year is
geographically similar throughout the basin, but the amount
of rainfall is less in regions, where industry and population
growth are highest, such as in Cerkezkoy, Corlu, Luleburgaz.
The average total precipitation in Thrace Region is 602 mm
and the highest daily precipitation is observed in Corlu with
a value of 232 mm. Annual average precipitation (for 45
years 1970-2014) calculated from meteorological stations is
about 590 mm. The lowest monthly average rainfall in the
basin is observed in August, whereas the highest monthly
average rainfall is observed in November. Continuous daily
stream flow is available for Inanli and Luleburgaz stream
gauges for 35 years (1980-2014). These data are analyzed
by separating the base flow, which it is approximately 6%
of rainfall as the average direct runoff. Double Mass Curve
analysis, applied on daily stream flows for 35 years, shows a
deviation on flow regime around 1997 in both stream gauges.
In addition, a clear change is observed in the base flow
characteristics of the river after 1997 which coincides with
the start of industrial development in the region. This base
flow increment shows the amount of point source discharges
to the river by industrial activities. Furthermore, in natural
condition, flow of the river in summer times were approaching
zero (dry), however, in recent years, there is a continuous
base flow without raining upstream of the river. Because
of the concentration of industrial facilities, the natural flow
mechanism of the river has been disturbed due to discharge
of groundwater or network water used by these facilities, and
the increase of the amount of domestic wastewater discharged
to the Ergene River due to rapid population growth, and as a
result, the amount of flow reaches high values in the summer.
For correction the effluents impact and natural streamflow
prediction, a Kalman Filter model used in daily, monthly and
annual time interval.

III. METHODS

After its first proposal by R.E Kalman, Kalman Filter
became a subject to many studies and researchers tried to
improve its performance. Calculation of Kalman Filter will be
briefly explained in next section. Also, its more comprehensive
explanation and derivation can be found in one of the more
recent studies [27].

A. Kalman filtering

The prediction via Kalman filtering is based on two val-
ues; mathematical expectation that is calculated via equation
written according to system dynamics and observed value that
depends on measurements. But, due to the possible errors in
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Fig. 1. Ergene River Basin and its zones

these values based on linearization, ignoring less effective
variables or measurements their reliability varies to time.
This factor is tracked with Kalman Gain and weights of
mathematical expectation and observed values are decided in
final prediction.

Kalman Filter has a cycle structure but first cycle requires
initial state and covariance information to start. after these vari-
ables provided, Kalman Filter cycle starts with the calculation
of mathematical expectation and observed value as

x−
k+1 = Axk +Buk+1 + wk (1)

and
zk = Hxk + vk (2)

where w and v are error matrices of the equations. These
errors can be caused by external factors, linearization, ignored
variables or measurement process. A and H matrices relate
state to results and might change in each time step but in this
study, they are assumed to be time invariant.

Kalman Filter plays a role in error negation and it is
important to track error information of the system throughout
the process. This information is carried by P which is the
initial covariance matrix of x and updated during the process
before the calculation of Kalman Gain and as preparation to
next cycle with equations

P−
k+1 = APkA

T +Q (3)

and
Pk+1 = (I −KkH)Pk (4)

where K denotes Kalman Gain and Q is the covariance matrix
of w. Before final decision, reliability variable, Kalman Gain
is updated according to system elements to decide weights of
two pre-predictions as

Kk = P−
k+1H

T (HP−
k+1H

T +R)−1 (5)

where R is the covariance matrix of v. Then, it is used in

xk+1 = x−
k+1 +Kk(zk −Hx−

k+1) (6)

to determine whether the prediction will be close to mathe-
matical expectation or observed value. Here, Figure 2 presents
Kalman Filter’s prediction cycle.

Fig. 2. Prediction cycle of Kalman Filter

B. Streamflow forecasting by Kalman Filter in Ergene River
Basin

In streamflow prediction from soil moisture to snow water
numerous variable are used by physical models but to simplify
them mathematical models only uses a few of them that
gives most information about characteristics of river. These are
mostly chosen as precipitation, evaporation and temperature.

During the implementation of Kalman Filter to Ergene River
conditions of the environment are considered and variables are
chosen. Since, Ergene River does not contain any big branches,
changes on the main line are generally carried over to next
stations. Watershed is under continental climate and that makes
precipitation a major factor of this system. Due to its size, wa-
tershed is divided into 3 precipitation zones. Conversion from
mm to m3/s is made by SWAT model. Since, industrialization
has an increasing trend in this area, wastewater poured in the
river can not be ignored. Considering these characteristics,
equation for Uzunkopru station’s streamflow prediction can
be written as

QU (k + 1) = c1QL(k) + c2WWL(k) + c3PZ(k) (7)

where QL is previous station’s streamflow value, PZ is the
total precipitation data collected from three zones

PZ(k) = c4PZ1(k) + c5PZ2(k) + c6PZ3(k) (8)

and WWL is wastewater affecting between two stations. For
relation of prediction and measurements, it is assumed that
river tends to retain its previous state which gives

QU (k + 1) = QU (k). (9)

Writing (7) and (9) in the form of (1) and (2) gives
QU (k + 1)
QL(k + 1)

WWL(k + 1)
PZ(k + 1)

 =


0 c1 c2 c3
0 1 0 0
0 0 1 0
0 0 0 1




QU (k)
QL(k)

WWL(k)
PZ(k)

+ w (10)

and

QU (k + 1) =
[
1 0 0 0

] 
QU (k)
QL(k)

WWL(k)
PZ(k)

+ v. (11)
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In (9), even though next step of every input is calculated,
beside QU (k+1), others are only temporary assignments and
will be overwritten before their next use. w and v are unknown
and assuming input errors are independent from each other,
their covariance matrices, Q and R are diagonal. These can
be written as

Q =


Q11 0 0 0
0 Q22 0 0
0 0 Q33 0
0 0 0 Q44

 , R = R1 (12)

After choosing initial state of every variable, unknown ones
are chosen with the optimization process that is presented in
Figure 3.

Fig. 3. Optimization process of system variables

Mesaured data is separated into two groups, one for op-
timization and other for testing. During optimization part
constants in A matrix and covariances of w and v matrices
that give best RMSE and NS are chosen. After that models
are tested on test data and compared according to their RMSE
and NS scores.

IV. RESULTS AND DISCUSSION

In this study, real data from 12.04.1981 to 31.12.1993 is
used, where 50% of the data is utilized for optimization of
constants and remaining is used for testing. To optimize Q
and R matrices, constants in A matrix are chosen and with
0.5, 0.25 and 0.1 resolution, every combination of Q and
R matrices are tested by predicting the data and comparing
it with the real values. Also effects of the precipitation is
separated into 4 days with [0 0.5 0.3 0.2] weights respectively.
Effects of the wastewater around 1990s are ignorable. So, for
both 6 input and 5 input systems, best combinations of Q
and R matrices are chosen based on RMSE of the models.
Also, 5 input model has almost the same result because of
industrialization’s negligible effect. Figure 3 and 4 show the
predictions of these models respectively with the observed
values of the Ergene River. While first model has 8.3142
RMSE and 0.8003 NS(Nash Sutcliffe Efficiency Constant),
second model has 8.2756 RMSE and 0.8022 NS.
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Fig. 4. Prediction of 6 input Kalman Filter model with real values, 8.3142
RMSE and 0.8003 NS

With all inputs, streamflow, precipitation and waste-water,
predictions of model are close to the measured real values.
Error is high only when the uncharacteristic changes occur
such as flood or drought. But even in those situations Kalman
Filter is able to predict the increase and decreases.
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Fig. 5. Prediction of 5 input Kalman Filter model with real values, 8.2756
RMSE and 0.8022 NS

These two models have best results, high accuracy around
river characteristics and reliable peak prediction during ex-
treme conditions. Error covariances of this environmental
model is not known and considering the length of data average
values are tried to be found. For this purpose, variables of
Q and R matrices from (12) are calculated with different
resolutions. Table I shows the RMSE and NS performances
of models that are created with different number of inputs
and Q and R matrices.

TABLE I
ERRORS OF MODELS WITH DIFFERENT RESOLUTION OF Q AND R

MATRICES

Number of Inputs - 5 6
Resolution

8.3136 RMSE, 8.3128 RMSE,
0.5 0.8003 NS, 0.8004 NS,

8.3168 RMSE, 8.3142 RMSE,
0.25 0.8002 NS, 0.8003 NS,

8.2756 RMSE,
0.1 0.8022 NS, -

With these data and model creation choices, increased Q
and R resolution and input number generally increase the
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performance but these improvements are mostly underwhelm-
ing. Also, considering computational demand increase that is
presented in Table II, in this case, it is preferred to avoid long
computation for small gain.

TABLE II
COMPUTATIONAL TIME REQUIREMENTS OF MODELS WITH DIFFERENT

RESOLUTION OF Q AND R MATRICES

Number of Inputs - 5 6
Resolution

0.5 1m30s 5m
0.25 25m 2h30m
0.1 48h 528h

As it can be seen from Table II, for 5 input models, 23
hours longer computation improves model by 0.002 NS or
0.04 RMSE. The same resolution increase for 6 input models
multiplies the time requirement by 200 which at the end gives
unsatisfactory improvements.

Kalman Filter is known for its successful short term predic-
tions but models are also used to calculate 7-14 and 30days
long predictions. These are calculated for every consecutive
7-14 and 30 day periods. Table III shows average errors
for both one day predictions for given period(corrected) and
without correcting system with observed values(uncorrected)
predictions.

TABLE III
AVERAGE RMSE OF MODELS FOR 7-14 AND 30 DAY PREDICTIONS

Period - 5 input 5 input 6 input 6 input
Model (Corrected) (Uncorrected) (Corrected) (Uncorrected)
7 days 2.4679 4.8308 2.6445 4.9811

14 days 2.8853 6.4416 3.0257 6.4571
30 days 3.5145 8.1995 3.6391 8.0850

According to results given in Table III, Kalman Filter’s
success drastically decreases when prediction period increases.
The reason behind this is Kalman Filter makes its predictions
based on previous ones and error of the model cumulates for
later cycles.

Considering best models, nonlinearity of the system and
Kalman Filter’s restrictions are main sources of error. There
are various factors affecting streamflow and majority of these
effects are nonlinear. For example, Figure 6 shows Uzunkopru
and Luleburgaz stations’ streamflow measurements.
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Fig. 6. Discharge of Uzunkopru and Luleburgaz stations

Even though most of the time increase at Luleburgaz station
is followed by another one at Uzunkopru, it is not valid for
every case whereas Kalman Filter has only one pattern and
unable to adapt this nonlinearity. Similarly, any effects that
cause river’s discharge to exceed standard limits of the river,
changes its dynamics and makes the pattern insufficient. In this
case Kalman Filter answers with scaled version of previous
day. Figure 7 shows an example of this problem.
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Fig. 7. Effects of river’s dynamics changes

Figure 7 shows Linear Kalman Filters biggest problem in
this study. Unknown characteristics lead to Kalman Filters
unexpected results which are ,in most cases, scaled version of
previous day. This type of error creates most of the prediction
errors and once they are negated, success of Kalman Filter can
be seen more clearly.

V. CONCLUSION & FUTURE WORKS

The implementation of Kalman filtering method in order to
predict the stream-flow in Ergene River Basin is presented.
In this study, in order to illustrate the success of proposed
prediction method NS and RMSE are given and examined in
detail. The successful application of Kalman filtering where
the real-time data is used, proves that Kalman filtering can
be utilized in order to complete the missing real-time data
where it is necessary and also achieve short-term prediction
for stream-flow.

Beside Linear Kalman Filter’s success, its weak sides are
observed such as higher error and uncharacteristic results
around peaks. Also, high computational demand is seemed
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as another problem. In order to overcome these problems,
Ensemble Kalman Filter approach can be tried. Calculation
of observed value at the beginning of the Kalman Filter cycle
can be switched between seasons instead of just assuming to
observe the same streamflow the next day.
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