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 

Abstract— Modern controllers are based on the use of 

mathematical models. However the models are always 

obtained through a reduction in the complexity of reality. 

Consequently, their ability to properly represent the 

general behavior of the processes is very limited. 

Therefore, it is advantageous to analyze the problem 

resulting from model uncertainty in the control of 

irrigation main canal pools. This problem has often been 

ignored in theoretical studies and in practical process 

control. This paper will first show a principal gains 

method on how to achieve the benefit of feedback in the 

face of uncertainties. Then it will present irrigation main 

canal pools example which illustrates the use of robust 

control to provide satisfactory performance despite of 

irrigation main canal pools. 

 

 

Index Terms— Irrigation canal; Robust control; Principal        

gains; 

I. INTRODUCTION 

he standard modern approach, to process control consists 

in constructing a mathematical model of the process and 

then using explicitly this model in the controller. 

However, there are two major problems with this approach: 

first, the model is only a simplified representation of the 

process which is generally much more complex; second, the 

process behavior continuously changes. For these two reasons 

there is inevitably a mismatch between the plant and the 

model. Such model uncertainties are responsible for the 

degradation of the controller. Hence, the first step in a robust 

control study is to quantify these uncertainties. For that 

purpose, an irrigation main canal pools is used, experiments 

based on the response to a step-like input were carried out at 

the first pool in order to obtain a linear mathematical model 

with which to describe its dynamic behavior [1]. The case of 

study presented in this paper is about the first pool of the 

Aragon Imperial Main Canal (AIMC) that exhibits large 

variations in its characteristic parameters [3].  The dynamic 

behavior of the first pool can be represented by second order 

model with a time delay [2] and by varying the operating 
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conditions. The models for four operating conditions different 

from the nominal conditions are obtained and their 

multiplicative uncertainties are also determined. In the next 

step a robust controller with principal gains method is 

obtained for irrigation main canal pools. 

 

This paper is organized as follows. Section II presents 

preliminaries and robustness condition, Section III introduces 

the principal gains method, Section IV introduces the main 

irrigation channel pool and application of the proposed control 

scheme and the controller, where the time domain and 

frequency domain tunings are also developed. , in this section 

we compare the robustness of controllers. Finally, Section V 

resumes the main conclusions obtained during the 

development of this work. 

II. PRELIMINARIES 

It is necessary to recall the basic required performances of 

a control loop in the frequency domain. Figure.1 shows the 

classical structure of a control loop with the main 

components: the controller (transfer matrix K(s)), the process 

uncertainty at the process output Δm(s), the set-point r, the 

loop’s error e and finally the manipulated variable u and the 

output y. Let G’(s) the transfer matrix of the true plant, all 

perturbed regimes, and then the following relation can be 

written:   

)()]([)(' sGsmIsG 
 (1) 

 

The largest singular value of Δm(s) is obtained from (1): 

  1
max max[ ( )] ([ '( ) ( )] ( ))m s G s G s G s 

  
 (2) 

 
Fig. 1. Feedback configuration with multiplicative uncertainties. 

 

A. Robust stability 

 

Assume that the nominal feedback system G(s) (i.e. with 

Δm(s) =0) is stable, then the true feedback system G′(s) is 

stable if the following inequality holds [4]: 

 

max

max

1
[ ( )]

[ ( )]t

T s
W s




  (3) 
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Where T(s) is the nominal closed loop transfer matrix given 

by: 

                
1)]()()[()()(  sKsGIsKsGsT  (4) 

 

And Wt(s) is a stability specification matrix such as: 

 

                max max[ ( )] [( ( )]tm s W s    (5) 

 

Then σmax [T(s)], the largest singular value of the nominal 

closed loop transfer matrix is a reliable indicator of the robust 

stability of the feedback system. Then the robustness 

condition of the feedback system is given by (3). 

 

B. Robust Performances 

Let Wp(s) a performance specification matrix, weighting 

matrix, then the robust performances of all perturbed regimes 

G′(s) are satisfied if the following inequality holds [4]-[5]: 

                 
max

max

1
[ ( )]

[ ( )]p

S s
W s




  (6) 

Where S(s) is the sensitivity matrix given by: 
 

                   
1)]()([)(  sKsGIsS  (7) 

 

In fact, the largest singular value of the sensitivity matrix 

σmax(s) [7], [8] and [9] is also an indicator of the sensitivity of 

the system response to a change of the plant character.                                                                    

In conclusion, the inequalities (3) and (6) represent the 

robustness conditions and must be satisfied to obtain a robust 

controller. 

III. PRINCIPAL GAINS METHOD 

 

The principal gains method is based on finding a controller 

with the following structure [6]: 

 

                )(4)(3)(21)( sKsKsKKsK   (8) 

 

Where: )0(1 1GK  is the inverse static gain. It is used to 

decouple the process in low frequency. 

 

1
2( )K s

s
 Is a set of integrators to eliminate the static error.  

K3 is a compromise coefficient between the stability and 

performances. 

 

K4(s) is a structure to reduce the resonance magnitude in 

middle and high frequency. In order to not affect the controller 

in low frequency, we have to set IK )0(4 , this can be 

obtained by minimization of the following criteria [4]:  
 

max maxmin 4( ) min 4max [ ( ) ( )]K J K w T m    (9) 
 

Where: 
max max( ) ( )T m    

is a stability robust condition.  

 

IV. APPLICATION: IRRIGATION MAIN CANAL POOLS 

A. Irrigation main canal description [1] 

The irrigation main canal considered in this paper is the 

Aragon Imperial Main Canal (AIMC), which obtains its water 

from the Ebro River [2]. The AIMC is a 108 km long cross-

structure canal with a design head discharge of 30m
3
/s. It has a 

trapezoidal cross-section and ten pools of different lengths 

which are separated by undershoot flow gates.  

The representation of this canal is given in Fig. 2, where the 

manipulated variable u1 (t) is the upstream gate position, and 

the output y1 (t) is the downstream end water level. 

 

 

 

A dynamic process model was developed with the aid of 

step responses. The transfer function of the nominal regime of 

the irrigation main canal pools is given by [3]: 

 

1

1 1 2

( )
( )

( ) (1 ( ))(1 ( ))
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G s e
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
 
  

-

 
  

The models for four operating conditions different from the 

nominal conditions (perturbed regimes) are also obtained with 

the aid of step responses [1]. 

3601
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Fig. 2. Equivalent schematic representation of the irrigation main canal pool. 
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B. Evaluation of multiplicative uncertainties Δm(s) 

   The largest singular values of the multiplicative 

uncertainties Δm(s) are determined from (2). These model 

parameter variations are caused by the following factors: the 

discharge regime variations through the upstream gates in the 

operation range, originate changes in pools storage volume 

between the null discharge volume and the maximum 

discharge volume in the downstream water levels and in the 

flow propagation. The result is given in Fig.3, where it is 

verified that the maximum singular values of these 

uncertainties are less than one at low frequencies and increase 

at high frequencies [4]. 

C. Robustness conditions 

   From the obtained results (fig. 3) and using (5), the stability 

specification Wt(s) is represented as follow: 

     

                             
)50001(9.0)( ssWt   (10) 

 

Then, the condition of stability robustness is given by 

inequality (3).  

 

 

 

The performance specifications for all possible perturbed 

regimes are defined such that these regimes have the same 

response time that nominal regime. Then the performance 

specification Wp (s) is given by: 

 

s

s
Wp

30000

)300001( 
  

 

The condition for robust performance is given by (6). 

Finally, the robustness conditions for irrigation main canal 

pools are represented in fig. 4: 

  

 

 

 

D. Robust controller with principal gains method 

  The principal gains method consists of finding a controller 

K(s) given by (8) such that (9) is satisfied and the conditions 

(3) and (6) for robust stability and performance are also 

verified. A simplified model from the nominal regime used in 

the design is defined by: 

 

)27.811)(79.8801(

0401.0

ss
Gsn


  

 

The controller is obtained as:  

 

s
sKGK

1
)(2;9377,24

0401.0

1
)0(1 1    

 

The coefficient value (K3 = 0.0011) is obtained by simulation. 

The structure K4(s) is chosen as: 

 
24( ) 1K s s s   

 

 

Where α and β are determined by minimization of criteria (9), 

 

α = 962.06; β = 71581.80. 

 

The final controller is then given by: 

 

s

ss
sK

)80..7158106.9621(
0274.0)(

2
  

The results in frequency domain are given in fig. 5. 

It is showed that the robustness conditions are not violated, 

since for multi-variables and mono-variable systems, the 

stability is guaranteed if the largest singular value of closed 

loop transfer matrix function [(T( )]max s is lower than the 

upper bound of the largest singular value of the model 

uncertainties
1

[( ( )]max W s
t


 
  . The same idea is used for the 

robust performance criterion.  

 
 

Fig. 3. multiplicative uncertainties Δm(s) 
 

 

 
Fig. 4. Robustness conditions. 
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The results in time domain are represented in fig. 6. 

The simulation    360 1 180 1 180s s se
    

have been carried 

out using Padé approximation, where the sampling period is 

set T=60s. The stability of all regimes, a good performance 

and a fast response time with principal gains controller (PG) 

are observed. It is noted that our obtained results are very 

encouraging with the PI and PID controllers reported by [1]. 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. Frequency results. 

  

 

 

 
(a) Closed loop of the nominal plant G(s) to a unity step command. 

 

 
(b) Closed loop responses of the perturbed plant G1(s) with k=0.01: (T1=500, 

T2=300, τ=360). 
 

 
 

(c) Closed loop responses of the perturbed plant G2(s) with k=0.01: 

(T1=15000, T2=300, τ=360). 

 

 
(d) Closed loop responses of the perturbed plant G3(s) with k=0.07: (T1=500, 

T2=300, τ=360). 

  

 
(e) Closed loop responses of the perturbed plant G4(s) with k=0.06: 

(T1=15000, T2=300, τ=360). 

 
Fig. 6. (a) (b) (c) (d) (e) Step responses of nominal of  and perturbed regimes 

of irrigation canal. 
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V. CONCLUSION 

In this paper a principal gains method to achieve the benefit 

of feedback in the face of uncertainties has been investigated 

and successfully applied at irrigation main canal pools. 

The results are very encouraging since control-oriented 

models facilitate the design of high-performance robust 

controllers, which allow the operability and efficiency of 

irrigation main canal pools to be increased and service to the 

users to be improved.  

The theory behind the robust control tools is simplified to 

be easily transmitted to irrigation processing students and 

engineers. Works are under progress to investigate the 

principal gains and H infinity methods for multi pools of 

irrigation main canal. 
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