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Abstract—The saturation problem is the one of the most
common handicaps for applying linear control to real appli-
cations, especially the actuator saturation. This paper focus
on a comparative study between the classic Linear Quadratic
Regulator (LQR) control and robust saturated sliding mode
control. In the first step, we present a design methodology of
SMC of a class of linear saturated systems. We introduce the
structure of the saturation, them the two steps of the design
methodology are investigated. The existence step, in whichwe
choose the sliding surface that gives good behaviour duringthe
sliding mode, is formulated as a pole assignment of linear system
in a region LMI through convex optimization. The solution to
this problem is therefore numerically tractable via linear matrix
inequalities (LMI) optimization. Which leads to the development
of a smooth and non-linear control law that ensures to reach
the sliding surface. The second step is devoted to present briefly
the Linear Quadratic Regulator (LQR) control technique.The
constraint of saturation is reported on the control vector. To
highlight results we present a comparative analysis with a SMC
and LQR controllers with saturation. Finally, we use an example
of a quarter of vehicle system to give simulation results.

Keywords: Variable Structure Control; Sliding Mode Con-
trol; LQR regulator; Saturation; Robustness; LMI.

I. I NTRODUCTION

The problem of saturation remains one of the obstacles to
provide properties of guarantee on the stability of systems.
Used in early days ([1], [2]...), and many other methods
which introduce conditions on systems containing saturation
functions ([3], [4], [5]...). Most industrial processes operate
in the areas caracterised by many physical and technological
constraints (saturation, limit switches...). The implementation
of the control law designed without considering these limita-
tions can have dire consequences for the system. The problem
of the control of saturated systems is a subject of great
interest for applications. Used in early days, many rigorous

design methods are available to provide guarantee properties
on systems stability. In robustness terms the sliding mode is
a very significant transitory mode for the Variable Structure
Control (VSC), ([6], [7]...).

The variable structure control has received increasing at-
tention because of its inherent insensitivity to disturbances
and parametric variations and ease of use for a quick and
accurate response. Design approaches for continuous-time
control systems in sliding mode are already well established.

Early work was mainly done by Soviet control scientists
([8],[9]...). In recent years, we find more research and many
successful applications ([10], [11], [12]...). This paperis orga-
nized as follows: in the beginning, we give a short introduction
on the structure of the saturation constraint reported on the
control vector and its implementation in the system. We will
then present a design procedure of robust saturated sliding
mode control.This controller development procedure contains
the classical steps of sliding mode design. The first one is
to build an optimal sliding surface.The choice of the sliding
surface is formulated as a pole assignment of a reduced order
linear uncertain system in a regin through convex optimization
The solution to this problem is therefore numerically tractable
via standard LMI optimization and the existing robust linear
system theory , and the second one is to choose a control
law to enforce the system behavior to reach and stay in the
desired sliding surface. To validate the theoretical concepts of
this work, we treated an application of a quarter of vehicle
system where we will highlight a comparison between the
sliding mode control and the LQR controllers.

II. SYSTEM WITH SATURATION CONSTRAINT

Let us consider that the structure of the saturation constraint
is described by figure 1:
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Fig. 1. The Structure of the saturation constraint

Assumption 1: The control vector is subjected to constant
limitations in amplitude. It’s defined by:

u ∈ ℜm = {u ∈ ℜm/− Usat ≤ ui ≤ Usat; Usat > 0} (1)

The term of saturation has the following form

sat(u) =







Usat if ui > Usat

ui if − Usat < ui < Usat

−Usat if ui < −Usat

, ∀i = 1, ...,m

(2)
we can write

sat(u)=βu (3)

the elements ofβi are expressed as follows

βi =







Usat

ui

if ui > Usat

1 if − Usat < ui < Usat
−Usat

ui

if ui < −Usat

, ∀i = 1, ...,m

(4)
The saturated system can be written as:

ẋ (t) = Ax (t) +Bβu (t) (5)

with A ∈ ℜn×n, B ∈ ℜn×m, x ∈ ℜn andu ∈ ℜm

Assumption 2: The pair(A,B) is controllable,B has full rank
m, andn > m.

III. SLIDING MODE CONTROL (SMC)

The sliding mode occurs when the state reaches and remains
in the surface given by :

S =

m
⋂

j=1

Sj = {x ∈ ℜn/Cx = 0} (6)

The sliding mode occurs when the state reaches and remains in
the surface intersection S of the m hyperplanes, geometrically
the subspace S is the null space of C.

Differentiating with respect the time,

ṡ = CAx+ CBβu = 0 (7)

if (CBβ)
−1 exists, then

ueq = − (CBβ)−1 CAx = −Kx (8)

with K = (CBβ)−1CA

ẋ = (In − βB (CBβ)
−1

C)Ax = Aeqx (9)

the dynamicsẋ (equation 9) describes the motion on the
sliding surface and depends only on the choice of C.

1) Design of the sliding surface:The canonical form used
in Reference [4] for VSC design to select the gain matrix C
that gives a good and stable motion during the sliding mode.

By assumption, the matrix B has full rank m; as a result,
there exists an (n x n) orthogonal transformation matrix T

such that:TB =

[

0
B2

]

, whereB2 is (m x m) and non-

singular. Note that the choice of an orthogonal matrix T avoids
inverting T when transforming back to the original system. As
the transformed state variable vector is defined as:

y = Tx (10)

the state equation becomes

ẏ(t) = Tx(t) = TAx(t) + TBβu(t) (11)

If the transformed state is partitioned asyT =
[

yT1 yT2
]

;
y1 ∈ ℜn−m; y2 ∈ ℜm

then
{

ẏ1(t) = A11y1(t) +A12y2(t)

ẏ2(t) = A21y1(t) +A22y2(t) + βB2u(t)
(12)

Since the sliding condition is

Cx = CT Ty = 0 (13)

witch

TATT=

[

A11A12

A21A22

]

,CTT=
[

C1 C2

]

(14)

We can the new defining sliding condition

C1y1 + C2y2 = 0 (15)

Assumption 3: CB is non-singular thenC2 must be non-
singular.

The sliding mode condition becomes

y2 = −C−1
2 C1y1 = −Fy1 (16)

wich F = C−1

2 C1 being an [m x (n-m)] matrix. The sliding
mode is then governed by the equations

{

ẏ1 = A11y1 +A12y2
y2 = −Fy1

(17)

representing an(n−m)th order system withy2 playing the role
of a state feedback control.The closed-loop system will then
have the dynamicṡy1 = (A11 − A12F )y1 This indicates that
the design of a stable sliding mode requires the selection ofa
matrix F such thaṫy1 = (A11−A12F )y1 has(n−m) left half-
plane eigenvalues. Performances are taken into account via
root clustering of the closed-loop dynamic matrix in a region
of the complex plane. The areaΩ (α,−q, r, θ) considered
here is defined in Figure 2,which ensures a minimum decay
rate α < 0, a minimum damping ratioξ = cos θ, and for
relative stability and speed limitation can be made to place
the eigenvalues in a circle in the left half complex plane.



 

Fig. 2. LMI Region:intersection of three elementary regions.

Where F must be selected, that those (n-m) eigenvalues
of the system are in the regionΩ (α,−q, r, θ), it can be
determined by using root clustering with LMI concept. C is
given by them :

C = [F Im]T (18)

2) Saturated control law design:Once the existence prob-
lem has been solved that is the matrix C has been determined,
attention must be turned to solving the reachability problem.
This involves the selection of a feedback control function
u(x) which ensures that trajectories are directed towards the
switching surface from any point in the state space. The control
strategy used here will be derived from that of Reference [13]
which originated from the work of Gutman [14], and it consists
of the sum of a linear control lawuL and a nonlinear partuN .
The general form is:

u(x) = uL(x) + uN(x) = Lx+ ρ
Nx

‖Mx‖+ δ
(19)

where L is an (n-m) matrix, the null spaces of the matrices N;
M; and C are coincident, andδ is a small positive constant to
replace the discontinuous component by a smooth nonlinear
function, yielding chattering-free system response.

Starting from the transformed state y, we form a second
transformationT2 : ℜn → ℜn such that

Z = T2y = T2Tx; ZT =
[

zT1 zT2
]

(20)

And z1 ∈ ℜn−m; z2 ∈ ℜm

where

T2 =

[

In−m

F
0
Im

]

(21)

T2 is non-singular as its inverse is given by

T−1

2 =

[

In−m

−F
0
Im

]

(22)

The new state variables are then
{

z1 = y1
z2 = Fy1 + y2

(23)

and the transformed system equation becomes
{

ż1 =
∑

1
z1 +

∑

2
z2

ż2 =
∑

3
z1 +

∑

4
z2 + βB2u

(24)

with 













∑

1
= A11 −A12F

∑

2
= A12

∑

3
= F

∑

1
−A22F +A21

∑

4
= A22 +A12F

(25)

In order to attain the ideal sliding mode, it is necessary to
force z2 and ż2 to become identically zero. To this end, the
linear control law partuL is formulated as

uL(z) = − (βB2)
−1

[Σ3z1 (Σ4 − Σ∗

4)z2] (26)

where
∑

∗

4
∈ ℜm∗m is any design matrix with stable eigen-

values. In particular, we may set
∑

∗

4
= diag (µi) such that

Re (µi) < 0 fot i = 1 to m. Transforming back into the original
x-space yields

uL(x) = Lx = − (βB2)
−1

[Σ3 (Σ4 − Σ∗

4)]T2Tx (27)

L = − (βB2)
−1

[Σ3 (Σ4 − Σ∗

4)]T2T (28)

Before presenting the nonlinear control law partuN letting the
matrix P2 denote the positive definite unique solution of the
Lyapunov equation

P2Σ
∗

4 +Σ∗

4P2 + Im = 0 (29)

thenP2z2 = 0 if and only if z2 = 0, and we may take

uN = −ρ
(βB2)

−1
P2z2

‖P2z2‖+ δ
(30)

Transforming back into the original x-space, we obtain

uN = −ρ
(βB2)

−1
[0 P2]TT2x

‖[0 P2] TT2x‖+ δ
(31)

since the existence of the nonlinear component is checked
them we can deduce the matrices N and M

N = − (βB2)
−1 [0 P2]TT2 (32)

M = [0 P2] TT2 (33)

3) Invariance of the sliding mode:Let us consider a con-
tinuous linear uncertain system described by

ẋ(t) = (A+∆A)x(t) + (B +∆B)u(t) (34)

∆A and∆B are the uncertainty of matching conditions type
written as

∆A = B∆Ã,∆B = B∆B̃ (35)

If the system is in sliding mode thens = Cx(t) = 0 En
différentiant par rapport au temps

ṡ = C
(

A+B∆Ã
)

x (t) + CB
(

I +∆B̃
)

u (t) = 0 (36)



if
(

I +∆B̃
)

−1

exists , then

ueq = −
(

I +∆B̃
)

−1

(CB)−1 C
(

A+B∆Ã
)

x (37)

As a result

ẋ (t) =
(

A+B∆Ã
)

x−B (CB)−1 C
(

A+B∆Ã
)

x (38)

We finally get:

ẋ (t) =
(

I −B (CB)
−1

C
)

Ax = Aeqx (39)

The dynamicsẋ (t) = Aeqx describes the motion on the
sliding surface which is independent of∆A and∆B and
depends only on the choice of the matrix C.
The dynamics behavior of the system is totally invariant with
respect to a subset of uncertainties called matched uncertain-
ties, and the dynamics are completely defined by the choice of
the sliding surface. However, this class of uncertainties has no
effect on the ideal dynamics, as it acts only within channels
implicit in the control input.

IV. L INEAR QUADRATIC REGULATOR (LQR)

In this part we briefly recall the principle of the LQR
control.
LQR: linear quadratic regulator. The system is linear and the
control is quadratic. Let us consider the linear system gives
in (45).

Assumption 4: The pair (A,B) is stabilisable, i.e. there is
no unstable and ungovernable mode in the system.

Consider a state variable feedback regulator in the form of

u = −kx (40)

The optimization procedure to obtain the values of K consists
of determining the control input u, which minimizes the
performance index J. The performance index J represents
the performance characteristic requirement as well as the
controller input limitation [15].

The state feedback control which stabilizes the system and
minimizes the LQR criterion

J =

∫

∞

0

(

xTQx+ uTRu
)

dt (41)

with R > 0 and Q≥ 0
The matrix gain K is represented by;

k = R−1BTP (42)

P is a definite positive solution of the equation of RICCATI:

PA+ATP − PBR−1BTP +Qx = 0 (43)

we obtain thenJmin = xT
0 Px0 with x(t = 0) = x0.

Then the feedback regulator:

u = −(R−1BT P̄ )x (44)

For the LQR control, we will use the same structure of
saturation applied to the SMC presented in the first part.

V. NUMERICAL APPLICATION

In this study, a quarter-vehicle MR suspension system
is established to evaluate the control performance of the
manufactured MR damper. Fig. 3 shows the quarter-vehicle
model of the semi-active MR suspension system, which has
two degrees of freedom. Here, m2 and m1 represent the
sprung mass and unsprung mass respectively. The spring for
the suspension is assumed to be linear and the tire is also
modeled as linear spring component and MR damper. Now, by
considering the dynamic relationship, the state-space control
model is expressed for the quarter-vehicle MR suspension
system as follows
The state equation of the system is given by,[16]:

Fig. 3. Two degrees of freedom vibrating system with one actuator

Ẋ(t) = Ax(t) +Bu(t) (45)

with

A =









0 0 1 0
0 0 0 1

−k1+k2

m1

k2

m1

−C1+C2

m1

C2

m1

k2

m2

− k2

m2

C2

m2

− C2

m2









B =









0
0
1

m1

0









Simulation is achieved under the following condition:

m1 = m2 = 1, k1 = k2 = 1, C1 = C2 = 0.01,

−1 ≤ u (t) ≤ 1

The initial condition is given byx0 =
[

0 0 0 1
]T



The figure (4) represents the poles of the reduced order system
in an area defined byΩ (α,−q, r, θ) = Ω (−0.4, 0, 2.5, pi/8)
in the complex plan.
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Fig. 4. Poles of the reduced system

After 3 iterations, the algorithm gives the stabilizing gain F of
the reduced system

F =
[

4.1215 2.3786 −4.5626
]

According to (18)

C =
[

4.1215 −2.3786 1.0000 4.5626
]

The following figure 5 and figure 6 presents, respectively, the
evolution of control input and the state variables (- - -: LQR
controller, –: SMC).
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Fig. 5. Evolution of the control law (- -: LQR, –: sliding mode)

Figure (5) presents the evolution of the saturated control input.
It’s clear that the two controllers are saturated and always
inferior to its maximal value in the two cases, but we can
check that the LQR controller have a more transient mode and
the convergence is more slowly than that of the first control ,
what proves that the robust stability of the SMC is checked.

0 5 10 15 20 25 30
−0.5

0

0.5

1

t(s)

x1

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

t(s)

x2

0 5 10 15 20 25 30
−0.5

0

0.5

1

t(s)

x3

−1

−0.5

0

0.5

1

x4
Fig. 6. System response (x1 to x4), (- -: LQR, –: sliding mode)

Figure (6) compares displacements of x1, x2, x3 and x4 with
saturation. It shows a typical stable sliding mode convergence
of the system using sliding mode control. As consequence, the
state variables dynamics of the system with LQR controller
have a more transient mode and the convergence is more
slowly than that of the first control.

The purpose of the second simulations is to illustrate the
performance of the proposed control scheme, and in particular
the effect of the uncertainty.
To analyze the robustness of the control techniques to match-
ing condition uncertainty, we repeated the same simulationin
the previous case but we have introduced the uncertainty in
damping coefficient.
Figure (7) and figure (8) present, respectively, the evolution of
the control input and state variables of the uncertain system
(- -: uncertain system, –: ideal system).
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Fig. 8. System response (x1 to x4), (- -: uncertain system, –:ideal system)

The positive effect of the proposed control structure on the
behavior of the uncertain system can be seen from Figures 7
and 8. In fact the performance of the closed-loop system, in
the presence of the uncertainty are almost similar is close to
that of the ideal system. This confirms the robustness of the
sliding mode control.
The dynamics behavior of the system is totally invariant with
respect to a subset of uncertainties called matched uncertain-
ties.

VI. CONCLUSION

In this paper, we proposed a comparative study of the
sliding mode and LQR controllers for linear time invariant
saturated systems. The structure of the saturation constraint is
reported on the control input and being of constant limitations
in amplitude. The design of the sliding surface is formulated
as a pole assignment of a reduced system in an LMI re-
gion.The non-linear saturated control scheme is introduced,

will be ensure the elimination of the undesirable chattering
phenomenon and ensure a stable sliding mode motion. After
that, we briefly had the principle and results of LQR controller
and we will use the same structure of saturation presented. To
verify the performance of the proposed SMC, we presented
the simulation results for two controllers, applied to the
"Two degrees of freedom vibrating system with one actuator".
Indeed these simulation results show that the LQR controller is
stable and acceptable,but the convergence is slowly. The SMC
can remove the transient mode had been the main defect of the
LQR control, and has the better performance. Consequently,
we verified that the proposed SMC had the better robustness
performance than the LQR control.
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