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  Abstract – This paper focuses on the problem of asymptotic 

stability analysis of discrete time-delay systems. Based on the 

methods, delay-dependent stability and delay-independent 

stability condition is derived. The stability criterion is expressed 

in the form of linear matrix inequalities (LMI), which can be 

easily solved using numerical standard software such as 

MATLAB. The problem is solved by applying a Lyapunov 

functional that has enabled us to obtain new results with a great 

accuracy in programming, such that they are reliable and 

accurate. An illustrative numerical example is provided to show 

the advantage of the proposed stability condition and the 

reliability of the results. 
 

Keywords -- asymptotic stability; discrete systems; delay systems; 
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I. INTRODUCTION 

Due to the development in the field of microelectronics 
analog controllers are yielding their places to digital computers. 
Indeed, and given the importance of these control systems, we 
are using methods and numerical models to analyze and / or to 
control industrial processes. 

 Two types of representations are available to model a 
continuous or discrete dynamic system namely the external 
representation that uses input-output relations (transfer 
function) or the internal representation (matrix) of dynamic 
system which is based on the concept of state. To implement 
such a control structure and ensure the desired objectives, a 
modeling in the generally requires discrete-time analog 
systems is needed. 

Digital control of physical systems requires, usually the 
development of discrete models. Several modeling strategies, 

developed in the literature reflecting a meaningful description 
of dynamical systems to be studied led to mathematical tools 
leading generally to linear or non-linear models with or without 
delays whose behavior may be more or less close to the real 
system. These models are described by relations between input 
variables and output variables that can be modified by inputs 
considered as secondary (disturbances) that always exist in 
practice. 

The initial modeling of a discrete time-delays system often 
leads to writing a recurrent equation between different terms of 
the input and output sequences. This formulation of the 
recurrent equation is well suited for numerical calculation. This 
is the form in which these algorithms are digital control 
methods. The system is fully defined and the recurrent equation 
can be solved if the initial conditions are specified.  

The analysis of the stability of delay systems has been 
conducted in the literature by numerous fundamental 
researches that depend on the type of systems considered and 
the scope. There are many methods studying the stability of 
linear discrete time-delay systems. These stability criteria can 
be classified into two main categories namely the frequency 
criterion using the notion of the characteristic equations and the 
time criterion based on Lyapunov theory.    

     The stability results for the existing time-delay systems 
can be classified into two types:  independent delay stability 
[1,2] and dependent-delay stability [3, 4]. Despite the above 
mentioned importance, less attention has been given to 
discrete-time delays systems [5, 8]. 

The use of Lyapunov methods for stability analysis 
of delay systems has always been the most interest subject in 
this research topic [9,10,16,17]. Recently, in [6, 8,11] the 
Lyapunov-Krasovskii functional that have been introduced to 
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the derivative of the state in time includes terms which depend 
not only on the present but also on the past states of the delay 
system. This extension (modification) allows the robustness 
analysis of the delay systems. In [12] the method of Lyapunov- 
Krasovskii for systems with discrete delay processing 
descriptor model was considered, whereas in [13] is discussed 
method of Lyapunov-Krasovskii neutral nonlinear discreet time 
delay systems. 

In this work, an extension of the Lyapunov-Krasovskii 
method to recurrent delay equation is developed, which 
describes a discrete delay linear system. Our main objective is 
to develop a new simple theory of the stability of discrete 
autonomous systems counterpart to delay the method of 
Lyapunov-Krasovskii for the suggested systems in [14, 19, 20]. 
The recurrent relation presented in this work in simple 
mathematical forms in [12, 13, 15] can be applied to 
autonomous discrete delay systems. 

 
This paper is organized as follows. In Section II, we present 

our notation and preliminary. Then, in Section III, we develop 
the asymptotic stability theorem admitting Lyapunov-
Krasovskii functional for discrete delay systems. In section IV, 
a theoretical application of asymptotic stability type Lyapunov 
- Krasovskii that can be applied to certain types of discrete time 
delay systems, the stability condition is obtained in the form of 
linear matrix inequality. In addition, an example is given to 
illustrate the obtained results. 

II. FORMULATION OF THE PROBLEM AND SOME 

PRELIMINARY 

R                                       Real vector space. 
*

( )
n n

ij
F f R= ∈                  Real matrix. 

TF                                      Transpose of the matrix F. 

> 0F                                 Positive definite matrix. 

0F ≥                                  Positive semi-definite matrix. 

( )Fλ                                   Eigenvalue of the matrix F. 

( ) || F ||Fσ =                        Singular value of the matrix. 

max
|| F || ( )

T
F Fλ=             Euclidean norm of the matrix F. 

 

Fact 1.  For any positive scalar α, and for any two vectors x 

and y, we present the following inequality: 

                          1T T T Tx y y x x x y yα α −+ ≤ +            (1) 

Note that :  { }: || || <
n

V x R xδ δ= ∈                                     (2) 

Lemma 1. [7] The zero solution of the difference system is 

asymptotically stable if there exists a positive definite 

( ( )) : nV x k R R+→  knowing that there is a > 0ρ  as: 

        2( ( )) ( ( 1)) ( ( )) || ( ) ||V x k V x k V x k x kρ∆ = + − ≤ −           (3) 

The above inequality is true throughout the linear resolution of 

the discrete system. If the above condition is valid for 

all ( )x k Vδ∈ , the zero solution of the difference system is 

locally asymptotically stable. 

Lemma 2. [7] For any constant symmetric matrix: 
* , > 0n n TM R M M∈ = , β  scalar as { }/ 0Zβ +∈  , and the 

vector function [ ]: 0,
n

W Rβ → , we have the following 

inequality: 

( )
1 1 1

0 0 0

(i) (i) (i) (i)

T

T

i i i

w M w w M w
γ γ γ

β
− − −

= = =

   
× × ≤ × ×   

   
∑ ∑ ∑           (4) 

III. STABILITY CRITERION 

      Roughly speaking, the stability of a system is its ability 

to resist any unknown small influences. Since in reality 

disturbances are always encountered, stability is an important 

property of any control system, delayed or non-delayed. 

 

      In this section, we give a stability condition for linear 

discrete delay dynamic systems. Lyapunov functional are 

defined, in autonomous system, by the following recurrent 

equation:   

                      ( 1) ( ) ( )x k Ax k Bx k q+ = + −                 (5) 

with  { }x( ) ( ) , , 1,.....,0q qθ ψ θ θ= ∈ − − +  an initial state of 

the associated function. 

 ( ) nx k R∈    is the state at time k. 

*n n

i
A R∈  are constant matrices of appropriate size. 

1, 2,.....q =   is a positive integer representing the time delay 

existing in the system. 

Whether V : n
R R→  in such a way that ( )V x  is bounded for 

all || ||x  is bounded.  

A. Delay-dependent stability 

 

    This group includes exact algebraic stability criteria 

depending on the delay and on the system constants and 

stability criteria which yield an upper bound of the admissible 

delay. 

     Using the stated theorem in the following and previously 

stated lemmas we can determine the asymptotic stability of the 

linear discrete system that is presented in equation (5). 

 

Theorem 1. 

 

      The discrete time-delay system (5) is asymptotically stable 

for any delay > 0q , if there exist symmetric positive definite 

matrices > 0TP P= , > 0TG G= and > 0TW W=  satisfying  

the following matrix inequalities: 

 

0

(1,1) 0 0

0 (2,2) 0

0 0 (3, )

0

3

ψ

 
 

=  
 



<



            (6) 

 

Such as:          

   2(1,1) A PA A P A G W PT T qα= + + + −                          (7) 

   1(2, 2) B PB B B WT Tα −= + −                                               (8) 

    (3,3) Gq= −                                                                       (9) 

 

Evidence. Consider the Lyapunov function defined as 

follows: 

 

1 2 3
( ( )) ( ( )) ( ( )) ( ( ))V y k V y k V y k V y k= + +                             (10) 

 Where: 

1
( ( )) ( ) ( )TV y k x k P x k= × ×                                                   (11) 
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( )
1

2 ( ( )) (i) (i)
k

T

i k q

V y k q k i x G x
−

= −

= − + × × ×∑                           (12) 

1

3 ( ( )) (i) (i)
k

T

i k q

V y k x W x
−

= −

= × ×∑                                              (13) 

[ ]( ) ( ), ( )y k x k x k q= −                                                          (14)         

    

With > 0TP P= , > 0TG G= and > 0TW W=  is symmetric 

positive definite solutions of (6) and [ ]( ) ( ), ( )y k x k x k q= − . 

 Then the difference of ( ( ))V y k  along the path of the solution 

(3) is given by: 

 

1 2 3
( ( )) ( ( )) ( ( )) ( ( ))V y k V y k V y k V y k∆ = ∆ + ∆ + ∆                 (15) 

 

With: 

1 1 1
( ( )) ( ( 1)) ( ( ))V y k V x k V x k∆ = + −                                       (16) 

 

From (16) we can write: 

 

[ ] [ ]

1 1 1
( ( )) ( ( 1)) ( ( ))

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T

T T T T

T T T T

V y k V x k V x k

Ax k Bx k q P Ax k Bx k q x k Px k

x k A PA P x k x k A PBx k q

x k q B PAx k x k q B PBx k q

∆ = + −

= + − + − −

= − + − +

+ − + − −

  
      (17) 

( )

2 2 2

1

1

( ( )) ( ( 1)) ( ( ))

( ) ( )

( ) ( ) ( ) ( )

k
T

i k q

k
T T

i k q

V y k V x k V x k

q k i x i Gx i

qx k Gx k x i Gx i

−

= −

−

= −

∆ = + −

 
= ∆ − + 

 

= −

∑

∑

                        (18) 

And:  

 

3 3 3

1

( ( )) ( ( 1)) ( ( ))

( ) W ( )

( ) W ( ) ( ) W ( )

k
T

i k q

T T

V y k V x k V x k

x i x i

x k x k x k q x k q

−

= −

∆ = + −

 
= ∆  

 

= − − −

∑                (19) 

 

Applying the Fact 1 in equation (17), the following inequality 

is obtained: 

 

2 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T T

T T T T

x k A PBx k q x k q B PAx k

x k A P Ax k x k q B Bx k qα α −

− + −

+ − −

≤                        (20) 

 

and therefore : 

 
2

1

1

( ( )) ( ) ( )

( ) ( )

T T T

T T T

V y k x k A PA A P A P x k

x k q B PB B B x k q

α

α −

 ∆ ≤ + − + 

 + − + − 

          (21) 

 

Thus the expression (15) of ( ( ))V y k∆  is rewritten as follows: 

 

2

1

1

( ( )) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) W ( ) ( ) W ( )

T T T

T T T T

k
T T T

i k q

V y k x k A PA A P A P x k

x k q B PB B B x k q qx k Gx k

x i Gx i x k x k x k q x k q

α

α −

−

= −

 
 

 
 

∆ ≤ + − +

+ − + − + −

− + − − −∑

 (22) 

Which is equivalent to: 

 
2

1

1

( ( )) ( ) ( )

( ) ( )

( ) ( )

T T T

T T T

k
T

i k q

V y k x k A PA A P A qG W P x k

x k q B PB B B W x k q

x i Gx i

α

α −

−

= −

 
 

 
 

∆ ≤ + + + − +

+ − + − − −

− ∑

     (23) 

 

By using Lemma 2, we obtain the following inequality: 

 

1 1 11 1
( ) ( ) ( ) ( )

T
k k k

T

i k q i k q i k q

x i qG x i x i Gx i
q q

− − −

= − = − = −

   
≤   

   
∑ ∑ ∑               (24) 

 

It follows that: 

 
2

1

1

( ( )) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) W ( ) ( ) W ( )

T T T

T T T

k
T T

i k q

T T

V y k x k A PA A P A P x k

x k q B PB B B x k q

qx k Gx k x i Gx i

x k x k x k q x k q

α

α −

−

= −

 ∆ + − + 

 + − + − + 

+ − +

+ − − −

≤

∑
        (25) 

 

From Fact 1 we get the following expression: 

 
2

1

1

( ( )) ( ) ( )

( ) ( )

( ) ( )

T T T

T T T

k
T

i k q

V y k x k A PA A P A qG W P x k

x k q B PB B B W x k q

x i Gx i

α

α −

−

= −

 
 

 
 

∆ + + + − +

+ − + − − −

−

≤

∑

       (26) 

 

Using Lemma 2, equation (26) will be rewritten as follows: 

 

2

1

1 1

( ) ( )

( ( )) ( ) ( )

1 1
( ) ( )

T T T

T T T

T
k k

i k q i k q

x k A PA A P A qG W P x k

V y k x k q B PB B B W x k q

x i qG x i
q q

α

α
−

− −

= − = −

+ + + − +

∆ + − + − − −

−

 
    
 ≤    
    
    

    

= Ω

∑ ∑

(27) 

Then: 
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2

1

1 1

1

( ) ( )

( ) ( )

1 1
( ) ( )

1
( ), ( ), ( )

(1,1) 0 0 ( )

0 (2, 2) 0 (

0 0 (3, 3)

T T T

T T T

T
k k

i k q i k q

T
k

T T

i k q

x k A P A A P A qG W P x k

x k q B P B B B W x k q

x i qG x i
q q

x k x k q x i
q

x k

x k q

α

α
−

− −

= − = −

−

= −

+ + + − +

+ − + − − −

−

  

  

   
   
   

  
 − × 
   

 
 

× × − 
 
 

Ω =

=

∑ ∑

∑

1

0

)

1
( )

( ) ( )

k

i k q

T

x i
q

y k y kψ

−

= −

 
 
 
 
 
  
   
  

= × ×

∑

    (28) 

With: 

1

( )

( ) ( )

1
( )

k

i k q

x k

y k x k q

x i
q

−

= −

 
 
 
 = −
 
  
   
  
∑

                                                        (29) 

Where: 

0
( ( )) ( ) ( )TV y k y k y kψ∆ ≤ × ×                                         (30) 

 

    Thus the condition (6) is satisfied, then ( ( )) 0∆ <V y k ,  

∀ x(k) ≠0 which allowed us to conclude that the system 

defined in equation (5) is asymptotically stable.  

 

        Finally we conclude that ( ( ))v y k∆  is negative definite; 

namely, there is a number ρ > 0  such that 
2

( ( )) ( )v y k y kρ∆ ≤ −  

and, consequently, the asymptotic stability of the system 

follows immediately from Lemma 1. 

B. Delay-independent stability 

 

       Delay-independent stability criteria are very useful, since 

in reality it is difficult to estimate the delays, especially if 

those delays are time-varying and/or state-dependent. 

 

Theorem 2:  

      The discrete time-delay system (5) is asymptotically 

stable, if there exist symmetric positive definite 

> 0TN N= and > 0TS S= such that following linear matrix 

inequality (LMI) hold: 

 

1

0

00

T

T

T T

N S A S

N B S

A S B S S

ψ

 −
 

= − 
 − 

< .          (31) 

 

Proof. Let the Lyapunov functional be: 

1

( ( )) ( )Sx( ) ( ) ( )
q

T T

j

V x k x k k x k j Nx k j
=

= + − −∑                (32) 

    > 0TN N= and > 0TS S= . 

The forward difference along the solutions of system (5) is: 

 

( ) ( )

( ) ( )

( ( )) ( ) ( ) ( ) ( )

( )S ( ) ( ) N ( )

( ) ( )

T

T

T T T

T T

T T
x k x k

x k x kA SA S N A SB

A SB B SB N

V y k Ax k Bx k q S Ax k Bx k q

x k x k N x k q x k q

x k q x k q

−      

+ −

 − +   
    

−     

∆ + − + −

− − −

=
− −

=
(33) 

 

If the following equation is satisfied: 

 

0

T T

T T

A SA S N A SB

A SB B SB N

 − +
 
  

<
−

          (34) 

 

Then 

 

[ ]

0

0

0

0
0

T T T T

T T T T

T

T

A SA S N A SB N S A SA A SB

NA SB B SB N A SB B SB

N S

N

A
S A B

B

− + −
= +

−−

−

−
+ <=

    
    

    

  
  

   

(35) 

 

Using Schur complement [18], it is easy to see that the 

condition (31)is equivalent to : 

 

1

0 0

0
T

T

T T

N S A S

N B S

A S B S S
−

 −
 

− 
 − 

<                          (36) 

 

             Note that the condition (36) is not LMI condition due 

to the existence of the term 1
S

−− . Pre and post multiply (36) 

with dig {I, I, S } we obtain LMI condition (31). 

 

          Thus the condition (31) is satisfied, then (y( ))V k∆ <0,  

∀ ( ) 0x k ≠ Which allowed us to conclude that the system 

defined in equation (5) is asymptotically stable.  

 

           Finally we conclude that (y( ))v k∆  is negative 

definite; namely, there is a number β > 0  such that 

2
(y( )) ( )v k y kβ∆ ≤ −  and, consequently, the asymptotic 

stability of the system follows immediately from Theorem 2. 

 

IV. NUMERICAL EXAMPLE 

           Consider the linear discrete time delay system 

autonomous defined by the following equation: 

 

0.1 0.02 0.1 0.01
( 1) ( ) ( 1)

0.1 0.15 0.2 0.2
x k x k x k

   
+ = + −   

−   
            (37) 

 

With: 

0.1 0.02

0.1 0.15
A

 
=  

− 
   ,  

0.1 0.01

0.2 0.2
B

 
=  
 
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A- Applying Theorem 1 to the equation defined in system (37) 

and through the relationship (6) .Matrices P, W and G 

symmetric positive definite which satisfy the sufficient 

condition for stability is obtained: 

 

3.2162   0.0172

   0.0172   3.1592
P

 
=  
 

 ,  

1.0696  0.0055

 0.0055  1 .0555
G


=

−

−


 
 

      and     
1.1628   0.0712

   0.0712  1 .1295
W

 
=  
 

 

 

B-Applying Theorem 2 to the equation defined in system (37) 

and through the relationship (31).Matrices N and S symmetric 

positive definite which satisfy the sufficient condition for 

stability is obtained: 

 

0.1158  1 .2007

  1 .2007  1 .0573
N

 
=  
 

   and 
0.6163  1 .6801

1 .6801  1 .0583
S

 
=  
 

 

 

V. CONCLUSION 

 

      In this paper, a sufficient condition has been derived which 

ensures the asymptotic stability of discrete systems with time 

delays. This condition is derived using an approach based on 

the direct method of Lyapunov. It was presented in terms of 

LMI. It is demonstrated that these results can be applied in 

practice in an efficient manner. It has been shown that these 

results are less restrictive than some of those in the current 

literature. The numerical calculations are carried out to 

illustrate the results. 
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