
5TH INTERNATIONAL CONFERENCE ON AUTOMATION,CONTROL ENGINEERING AND COMPUTER SCIENCE (ACECS-2018) 1

IMAGE PROCESSING BY A FRACTIONAL
PARTIAL DIFFERENTIAL EQUATION

ZEGHBIB FATIMA ZOHRA and Messaoud Maouni
Laboratoire LAMAHIS, Departement of mathematics, Reu El-Hadaiek P.O.Box 26,
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Abstract—Many fractional-order based methods
have been used in image processing field, and many
methods are developed to solve the problem of frac-
tional systems. The traditional integer-order partial
differential equation-based image denoising approaches
often blur the edge and complex texture detail; thus,
their denoising effects for texture image are not very
good. To solve the problem, a fractional partial dif-
ferential equation-based denoising model for texture
image is proposed, which applies a novel mathematical
method—fractional calculus to image processing from
the view of system evolution. We know from previous
studies that fractional-order calculus has some unique
properties comparing to integer-order differential cal-
culus that it can nonlinearly enhance complex texture
detail during the digital image processing.

Index Terms—Topological degree, elliptic problem,
homotopy, image restoration

I. Introduction
Removing noise while preserving fine details is a

challenging issue in image processing. One classical
partial differential equation (PDE) based technique is the
total variation (TV) minimization, which was inaugurated
in [1] by Rudin and al. depicted as

min
u∈BV (Ω)∩L2(Ω)

∫
Ω

|Du|+ γ

2

∫
Ω

|u− u0|2 dx, (1)

where Ω denotes a bounded open domain with a
Lipschitzian boundary, u and u0 represent the original
image and the observed image respectively. Furthermore,
to improve the edge-preserving capability, T. CHAN and
Chan [2,3] presented the adaptive TV approach to image
restoration.

The PM model has good performance in flat regions
with uniform intensity distribution,and the TV model
works better inpreserving edges X.Zhang et al.[5] pro-
posed anovel model (i.e., PMTV model) by weighted
combinations of PM model and TV model A. Yahya et
al.[6] proposed a new denoising technique by blending
isotropic diffusion, PM model, and TV model. Although
the above second-order PDEs can reduce noise level while

preserving the image features, they tend to make the
processed image look “blocky”, because the images used
by second-order PDEs to approximate an observed image
are often piecewise constant. In order to reduce blocky
effect, a class of four-order PDEs were introduced by You
and Kaveh in 2000 [7], but these methods often lead to
speckle effect.

To overcome those aforementioned limitations, fraction-
alorder PDEs have recently been researched and applied
to the field of image processing and computer vision. For
example, Bai and Feng [8] proposed a class of FPM models
for image denoising, in which the energy function is defined
as:

The main goal of this work is to apply an adaptive
fractional order regularization term for the restoration of
textured images corrupted by additive noise and blur. To
achieve this aim, we use a 2-phase approach. First we
apply a suitable texture detection method on the observed
image to obtain a texture map. Then a fractional order
regularization is applied to the parts of the image which
are characterized to be texture regions by the map and the
classical TV regularization (`1−TV ) is applied elsewhere.
In particular, we propose to replace the TV regularization
term ‖u‖TV in 1 with a spatially adaptive fractional order
TV regularization term, thus integrating the following four
ingredients:
• use of the fractional order α of derivatives to better

preserve textures,
• spatial adaptivity of α in order to allow flexibility in

choosing the correct regularizing operator,
• spatial adaptivity of γ in order to locally control the

extent of restoration over image regions according to their
content,
• an effective texture detection methodology based on

the noise auto-correlation energy which makes no assump-
tion about the noise level of the image. This inspired part
of the work [5].

II. The proposed adaptive model

We propose to modify the functional in 1 to the
following adaptive fractional variational model:
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Fig. 1: α = 1.0and1.5

min
u∈BV (Ω)∩L2(Ω)

∫
Ω

|Dα (Gσ ∗ u)|+ γ

2

∫
Ω

|u− u0| dx, (2)

where γ representing the regularization parameter for
the ith pixel, where α represents the fractional order of
differentiation for the ith pixel and Gσ is a Gaussian
function of standard deviation σ, and

Dαu =
(
Dα
xu,D

α
y u
)t

is the fractional-order discrete gradient operator, with
components representing the x and y-directional fractional
finite difference operators.

Let us motivate our model by analyzing the high-pass
filtering character of the fractional order derivative
operator. In Fig. 1 we show the restored images of the
blurred and noisy test image in Fig. 2 and Fig.3 by
applying model (1) while keeping γ = 1.0.

III. Texture detection method

Our idea is to use the auto-correlation function to
detect non-whiteness in data. Inspired by [1], starting
from the observed degraded image, i.e., u(0) = u0 , we
apply a simple TV-flow with Neumann homogeneous
boundary conditions

u(k+1) = u(k) + t∇

(
∇αu(k)∣∣∇Gσ ∗ u(k)

∣∣
)

(3)

Fig. 2: α = 1.8, α = 2

Fig. 3: (a) true image, (b) α = 1.5 (c)α = 1.8, (d)α = 2

which approaches a piecewise constant image, so-called
”cartoon model”, that we denote by u(k).

Under this decomposition, the residual can be
represented as

r(k) = f − u(k) = unc + e,

we propose to consider the auto-correlation of the residue
r(k) and to choose k̃ accordingly.

To describe the details of the approach, we briefly
introduce some required statistical concepts. Let
ε = {Ei,j : i, j = 1,···, n} be an n×n discrete random field
with Ei,j denoting the scalar random variable modeling
noise at pixel (i, j). The auto-correlation of ε is a function
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ρε mapping pairs of pixel locations (i1, j1), (i2, j2) into
a scalar value that must lie in the range [−1, 1], which
represents the Pearson’s correlation coefficient between
the two corresponding random variables Ei1,j1 , Ei2,j2 ,
i.e.,

ρε [i1, j1, i2, j2] =
E
[(
Ei1,j1 − µi1,j1

) (
Ei2,j2 − µi2,j2

)]
σ

i1,j1
σ

i2,j2
(4)

where E is the expected value operator, µi,j and σi,j are
the mean and standard deviation of the random variable
Ei,j .

Since we assume that noise is white, i.e., wide-sense
stationary, zero-mean, uncorrelated, the auto-correlation
of E depends only on the lag between the two pixel
locations [l,m] = (i2− i1, j2− j1) and (4) can be rewritten
as follows

ρε [l,m] = 1
σ2E [Ei,jEi+l,j+m] =

{
1 if (l,m) = (0, 0)

0 otherwise,
l,m = 0, ...n−1

(5)

independently on i, j. That is, a white noise is charac-
terized by zero values of the autocorrelation function at
all non-vanishing lags.

Moreover, assuming that the noise process is also er-
godic, provided that the observed realization e of the noise
random field ε is ”sufficiently long”, implies that ρε in (5)
is well estimated by the sample auto-correlation function
of e defined as

ρ̂ε [l,m] = 1
n2σ̂2

n∑
i,j=1

ei,jei+l,j+m, (6)

where σ̂2 is the sample variance of the observed noise
realization e. We remark that, for a generic observed real-
ization x, the sample auto-correlation ρ̂x[l,m] ∈ [−1, 1],
with 1 indicating perfect correlation and −1 indicating
perfect anti-correlation.

In order to find a characteristic scale k̃ to detect tex-
tures, we propose to minimize the following residual auto-
correlation energy

Jr(k) = max
[l,m] 6=[0,0]

|ρ̂r(k) [l,m]| , (7)

that, according to 6, for a cartoon image corrupted by
white noise should be zero. For a cartoon image without
textures, the energy Jr(k) monotonically decreases and
vanishes. In the presence of textures, initially, the TV-flow
makes the residual image be essentially given by noise,
so that the auto-correlation energy Jr(k) decreases. As
soon as the texture part unc initiates to contaminate the

residual, the energy Jr(k) starts increasing since textures
are typically correlated.

Our proposal is based on the idea to find the charac-
teristic scale k̃ which makes the auto-correlation energy of
the residual image Jr(k) minimal.

IV. The numerical algorithm
The fidelity and regularization terms in 1 are not dif-

ferentiable, therefore in the following we use a smoothed
version of them. To this end, let us define |v|ε =

√
v2 + ε

for any v ∈ R and ε > 0, let β and γ be two small
regularization parameters. Hence, we want to minimize the
functional

Algorithm 1.1: Texture Detetion (TD) Algorithm

Input: degraded image u0 , number of texture classes
C ;

Output: texture-adaptive parameters γi , αi , i =
1,···, n2 ;

1) Initialize the iterative process by setting u(0) = u0 ;
2) Repeat
3) perform one step of the TV flow u(k+1) = TV (u(k))

by 3
4) compute the residue image r(k+1) = u0 − u(k+1)

5) compute the residue auto-orrelation 3c1r(k+1) by 6
6) compute the residue auto-orrelation energy Jr(k+1)

by 7
7) until Jr(k+1) > Jr(k)

8) k̃ := k harateristi sale found at the rst lo al mini-
mum;

9) T = ComputeTexture Measure (u(k̃)) with T taking
values in [0, 1];

10) partition T into C classes T1, T2,··· , TC ;
11) assign (λi, αi) a ording to Ti for i = 1,··· , C .

V. CONCLUSION
This work proposes new applications of fractional-order

partial differential equations in image processing. Our
studies led to proposing a general reconstruction algorithm
that incorporates the fractional derivative implementation
from [1]. Concerning denoising, better results are obtained
with an order α which is fractional rather than integer.
The interesting values for the fractional order α seem to
be around 1.5 and 1.75. It corroborates previous results [1].
Contrary to existing iterative processes with a fractional
order, the algorithm presented here is non iterative. It
gives similar results for a shorter computer time and
can be used to solve texture problems. The comparison
with state-of-the-art methods involving partial differential
equations showed better results in terms of quality.
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Fig. 4: (a) blur- and noise-free image;
(b) the corrupted image produced by Gaussian blur,
defined by the parameters band = 3 and sigma = 1.5
and by 0.1 of Gaussian noise;
(c) restoration with `1 -TV with
λ1 = 0.1;
(d) restored image determined by AF algorithm;
(e) restoration with `2− TV with λ1 = 0.1;
(f ) texture classes computed on (b)

Fig. 5: (a) blur- and noise-free image;
(b) the corrupted image produced by Gaussian blur,
defined by the parameters band = 3 and sigma = 1.5
and by 0.1 of Gaussian noise;
(c) restoration with `1 -TV with
λ1 = 0.1;
(d) restored image by our model;
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