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Abstract—In this paper, we study the existence of
solutions for nonlinear elliptic problem, in a bounded
domain of RN , with zero Neumann boundary condi-
tions, and give an existence theorem of weak solutions
for the following equation

A(u) = f(u),

where A(u) = −div
(
g(|∇u|)∇u

)
− 1
λ2 div(∇u), and

f ∈ L2(Ω). We also give some numerical results on
examples images of the application of this problème
for restoration in image processing.

Index Terms—Topological degree, elliptic problem,
homotopy, image restoration

I. Introduction
Let Ω be a bounded domain in RN . In the classical

Sobolev space W 1,p(Ω), A.Atlas, F.Karami, D.Meskine [1]
studied the solution of the following problem:

u− div
(
g(|∇u|)∇u

)
− 1
λp

div(|∇u|p−2∇u) = f.

where g is a decreasing function defined by
g(k) = 1

1 + ( kλ )2 or g(k) = exp
(
− k2

2λ2

)
. We recover the

linear diffusion if g = 1, and we remark that g satisfies the
following conditions.

lim g(k)
k→0

= 1,

lim g(k)
k→+∞

= 0.
(1)

In this paper we study the existence of a solution for the
following nonlinear problem:
−div

(
g(|∇u|)∇u

)
− 1
λ2 div(∇u) = f(u) in Ω,(

g(|∇u|) + 1
λ2

)
∇u · ~η = 0. on ∂Ω,

(2)
where Ω ⊆ RN is the bounded domain with smooth
boundary ∂Ω, λ > 1 be a given contrast parameter.

We assume that f : Ω × R → R is continuous function
satisfying the caratheodory conditions, and verifying also

the growth restriction defined below:

|f(x, s)| ≤ d(x) + 1
2λ2 |s|, (3)

where d ∈ L2(Ω) and λ > 0 is real positive constants.

Many algorithms are proposed for image processing
[6], [7], [9]–[11]. In this paper, we present a new model
for image restoration. The existence of solution of our
PDE model is given by the compacteness methode . On
the other hand we aplly our theoretical result in a noisy
images (see [1], [7], [9]).

This article is organized as follows. In the next section,
we give the definition of weak solution, the theorem of
main result and we prove the existence of the solution
of the problèm (2). And the last section is devoted to
numerical aspects and results.

II. Proposed model
Given f ∈ L2(Ω), we are interested in finding weak

solution of the problem (2).
We give now a definition of weak solution.

Definition II.1. We say u ∈ H1(Ω) is a weak solution for
the problem (2) if for any v ∈ H1(Ω) we have∫

Ω

(
g(|∇u|) + 1

λ2

)
∇u∇v dx =

∫
Ω
f(u)v dx. (4)

Our main result is formulated in the following theorem.

Theorem II.1. Under condition (1) and (3), problem (2)
has at least one solution.

Proof: Let W be a finite-dimensional subspace of
H1(Ω) endowed with the H1-norm, and W ∗ its dual.
Define the mapping H : W × [0, 1]→W ∗ by

〈H(u, t), v〉H =
∫

Ω

(
g(t|∇u|)+ 1

λ2

)
∇u∇v dx−

∫
Ω
f(tu)v dx

(5)

for all v ∈W . H is well defined. Let us show now that{
u ∈W : H(u, t) = 0, for same t ∈ [0, 1]

}
⊂ B̄

(
2λ2‖d‖L2

)
.
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Lemma II.1. There exists R > 0, such that
1) { ∀t ∈ [0, 1],∀u ∈ V

H(t, u) = 0⇒ ‖u‖H1(Ω) ≤ R.

2) H is bounded.

Proof:
Indeed, if H(u, t) = 0 for same (u, t) ∈W × [0, 1], then

0 = 〈H(u, t), u〉 ≥ 1
λ2 ‖u‖

2
H1 − ‖f(u)‖L2‖u‖L2

≥ 1
λ2 ‖u‖H1 − ‖d‖L2 − 1

2λ2 ‖u‖H1 ,

which implies that

‖u‖H1 ≤ 2λ2‖d‖L2 . (6)

Consequently, for any R > 2λ2‖d‖L2 , we have

H(u, t) 6= 0 if (u, t) ∈ ∂BW (R)× [0, 1]. (7)

Now, if (u, t) ∈ B̄W (R)× [0, 1], we have

|〈H(u, t), ϕ〉| ≤
(

max(1 + 1
λ2 ,

1
2λ2 )‖u‖H1 + ‖d‖L2

)
‖v‖H1 ,

≤ (KR+ ‖d‖L2)‖v‖H1 ,

such that K = max(1 + 1
λ2 ,

1
2λ2 ), for all v ∈ H1(Ω), and

hence

H
(
B̄W(R)× [0, 1]

)
⊂ B̄W∗

(KR+ ‖d‖L2). (8)

We now show that H is continous.

Proposition II.1. The mapping H is continuous on

B̄W (R)× [0.1]

.

Proof: Let (um, tm) ∈ B̄W(R) × [0, 1] converge to
(u, t) in W × [0, 1], i.e. in H1× [0, 1]. Since (H(um, tm)) is
bounded because of (8), to prove that

H(um, tm)→ H(u, t),

it is sufficient to show that H(u, t) is the unique cluster
point of (H(um, tm)). Let ` ∈W∗ be such a cluster point,
still denoted by (tm), (um) a subsequence of (tm), (um)
respectively such that

H(um, tm)→ ` in W∗.

Since um → u in H1(Ω), it follows that um → u in L2(Ω),
and hence, going if necessary to a subsequence, we may
assume that

um → u a.e in Ω and ∃ H ∈ L2(Ω); |um| ≤ H a.e. (9)

On the other hand, ∂ium → ∂iu in L2(Ω). This implies
that

g(tm|∇um|)→ g(t|∇u|) a.e in Ω,

and hence, for any v ∈W ,

g(tm|∇um|)∇v → g(t|∇u|)∇v

in L2(Ω). We conclude that∫
Ω

(
g(tm|∇um|) + 1

λ2

)
∇um∇v dx

→
∫

Ω

(
g(t|∇u|) + 1

λ2

)
∇u∇v dx.

For the last term,

f(tmum)→ f(tu) a.e.,

by dominated convergence (from (3) and (9)) we have

f(tmum)→ f(tu) in L2(Ω),

and consequently∫
Ω
f(tmum)v dx→

∫
Ω
f(tu)v dx.

We obtain
〈H(tm, um), v〉H

=
∫

Ω

(
g(tm|∇um|) + 1

λ2

)
∇um∇v dx−

∫
Ω
f(tmum)v dx

→
∫

Ω

(
g(t|∇u|) + 1

λ2

)
∇u∇v dx−

∫
Ω
f(tu)v dx

= 〈H(t, u), v〉H .

Thus ` = H(u, t).
It is clear that

H : W × [0, 1]→W ∗

is a continuous homotopy and the existence of at least one
solution of the problem (2) would follow from

degB
(
H(·, 1), B(R), 0

)
6= 0

All those proprieties allow us to apply the homotopy
invariance propriety and obtain

degB
(
H(·, 1), B(R), 0

)
= degB

(
H(·, 0), B(R), 0

)
. (10)

But H(u, 0) = 0 is equivalant to the linear problem

(1 + 1
λ2 )

∫
Ω
∇u∇v −

∫
Ω
f(x, 0)v = 0,

for all v ∈ W, whose solution is unique because of the
bounededness of the set of its possible solutions. Conse-
quently,

degB
(
H(·, 0), B(R), 0

)
= ±1,

and from (10) and the existence propriety of degree, there
exists u ∈ BW(R) wich satisfies∫

Ω

(
g(|∇u|) + 1

λ2

)
∇u∇v =

∫
Ω
f(u)v,

‖u‖H1 ≤ 2λ2‖d‖L2 .

(11)

User1
Text Box

User1
Typewritten Text
Copyright IPCO-2019ISSN 1737-930X

User1
Typewritten Text
International Journal of Computer Science, Communication & Information Technology (CSCIT)Vol.6 pp.32-37



5TH INTERNATIONAL CONFERENCE ON AUTOMATION,CONTROL ENGINEERING AND COMPUTER SCIENCE (ACECS-2018) 3

for all v ∈W .

We now show the passage to the limit.
Consider the function a : RN → RN defined by

a(ξ) =
(
g(ξ) + 1

λ2

)
ξ for any ξ ∈ RN .

To prove the passage to the limit, we need the following
lemma:

Lemma II.2. Let 0 < λ ≤ 1, for any ξ, η ∈ RN sush that
ξ 6= η we have (

a(ξ)− a(η)
)
· (ξ − η) > 0.

The proof of the above lemma can be found in [?].

Lemma II.3. [3]

If a ∈ C(RN ,RN ), a(ξ) ≤ (1 + 1
λ2 )ξ for all ξ ∈ RN

and

if un → u in H1(Ω)

so

a(∇un)→ a(∇u) in L2(Ω).

Lemma II.3 is proved by the dominated convergence the-
orem of Lebesgue. Now, it is well known that one can write
H1(Ω) =

⋃
m≥1Wm where Wm ⊂Wm+1(m ≥ 1) and Wm

has dimension m. Consequently, given any v ∈ H1(Ω),
there exists a sequence vm with vm ∈Wm which converges
to v. On the other hand, by (11) applied to W = Wm,
there exists, for each m ≥ 1, some um ∈Wm such that∫

Ω
a(∇um)∇ψ dx =

∫
Ω
f(um)ψ dx,

for all ψ ∈ Wm. In particular, taking ψ = vm introduced
above, ∫

Ω
a(∇um)∇vm dx =

∫
Ω
f(um)vm dx,

‖um‖H1(Ω) < 2λ2‖d‖L2

(12)

for all m ≥ 1. The estimate in (12) implies that, going if
necessary to subsequences, we can assume that there exists
u ∈ H1(Ω) such that

um → u weakly in H1(Ω),

um → u strongly in L2(Ω).

As
(
a(∇um)

)
m∈N is bounded in L2(Ω), then there exists

γ ∈ L2(Ω) such that

a(∇um)→ γ weakly in L2(Ω),

and ∇vm → ∇v strongly in L2(Ω). On the other hand, as
f(um) → f(u) in L2(Ω), one can let m → ∞ in (12) to
obtain∫

Ω
γ∇v dx =

∫
Ω
f(u)v dx for all v ∈ H1(Ω). (13)

It remains to show that∫
Ω
γ∇v dx =

∫
Ω
a(∇u)∇v dx for all v ∈ H1(Ω),

for it using the tirck of Minty, we begin by studying the
limit of

∫
Ω a(∇um)∇um dx. Indeed∫

Ω
a(∇um)∇um dx =

∫
Ω
f(um)um dx→

∫
Ω
f(u)udx,

because um → u weakly in H1(Ω). But we know that u
satisfied (13), and hence∫

Ω
f(u)udx =

∫
Ω
γ∇udx.

Therefore

lim
n→+∞

∫
Ω
a(∇um)∇um dx =

∫
Ω
f(u)udx

=
∫

Ω
γ∇udx.

(14)

Let v ∈ H1(Ω); it exists (vm)m∈N such that vm ∈Wm for
all m ∈ N and vm → v in H1(Ω) when m→ +∞. We will
pass to the limit in the term

∫
Ω a(∇um)∇vm dx through

the monotony assumption.
Indeed,

0 ≤
∫

Ω

(
a(∇um)− a(∇vm)

)
(∇um −∇vm) dx =∫

Ω
a(∇um)∇um dx−

∫
Ω
a(∇um)∇vm dx

−
∫

Ω
a(∇vm)∇um dx+

∫
Ω
a(∇vm)∇vm dx

= S1,m − S2,m − S3,m + S4,m.

We saw in (14) that S1,m →
∫

Ω
γ∇udx when m → ∞.

We have
lim

m→+∞
S2,m =

∫
Ω
γ∇v dx.

Similarly,

lim
m→+∞

S3,m =
∫

Ω
a(∇v)∇udx.

Finally, we also have

lim
n→+∞

S4,m =
∫

Ω
a(∇v) · ∇v dx.

when m→ +∞.
The passage to the limit into inequality therefore give:∫

Ω

(
γ − a(∇v)

)
(∇u−∇v) dx ≥ 0 for all v ∈ H1(Ω).

We now choose astutely test function v . We take
v = u + 1

m
ṽ, with ṽ ∈ H1(Ω) and m ∈ N∗. We thus

obtained:

− 1
m

∫
Ω

(
γ − a(∇u+ 1

m
∇ṽ)

)
∇ṽ dx ≥ 0,

and so
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∫
Ω

(
γ − a(∇u+ 1

m
∇ṽ)

)
∇ṽ dx ≤ 0.

But u+ 1
m
ṽ → u in H1(Ω), therefore by lemma II.3,

a
(
∇u+ 1

m
∇ṽ
)
→ a(∇u) in L2(Ω)

.
Passing to the limit when m→ +∞, then we obtained∫

Ω

(
γ − a(∇u)

)
∇ṽ dx ≤ 0 ∀ṽ ∈ H1(Ω).

By linearity (can be changed ṽ into −ṽ), we have:∫
Ω

(
γ − a(∇u)

)
∇ṽ dx = 0 ∀ṽ ∈ H1(Ω).

We deduce that∫
Ω
γ · ∇ṽ dx =

∫
Ω
a(∇u)∇ṽ dx ∀ṽ ∈ H1(Ω).

Hence we have to show that u is a solution of (2).

III. Numerical aspects and results

The artificial discretisation associated with the problem
(2) can be rewritten as follows:

∂u

∂t
− εdiv(Φ(|∇u|)∇u) = f(u) in (0, T )× Ω

Φ(|∇u|)∇u · ~η = 0 in (0, T )× ∂Ω
(15)

where f and Φ are defined respectively by

f(s) = exp
(
− s

λ

)
and Φ(t) = 1

1 + ( tλ )2 + 1
λ2 ,

or Φ(t) = exp
(
− t2

2λ2

)
+ 1
λ2

The discretization of the Problem (15) is given by the
finite difference method (see [2]). Let us h = 1 the space
step and ∆t the time step, we can write

(∇u)1
i,j =

{
ui+1,j − ui,j si i < N1,

0 si i = N1.

(∇u)2
i,j =

{
ui,j+1 − ui,j si j < N1,

0 si j = N1.

|(∇u)i,j | =
√

((∇u)1
i,j)2 + ((∇u)2

i,j)2.

We can also write for every field p = (p1,p2) ∈ R2, the
discrete divergence approximation:

(div p)i,j =


p1
i,j − p1

i−1,j si 1 < i < N1

p1
i,j si i = 1

−p1
i−1,j si i = N1

+


p2
i,j − p2

i,j−1 si 1 < j < N1

p2
i,j si j = 1

−p2
i,j−1 si j = N1,

where N1 is an integer greater than 2. One can write the
following scheme:

uk+1(i, j)

= uk(i, j) + ∆t
(

div(Φ(|∇uk(i, j)|)∇uk(i, j))
)
− f(i, j),

where uk(i, j) = u(xi, yj , tk), xi = ih, yj = jh, tk = k∆t
and ∆t = T

M
.

As shown in the figures below 1 and 2. Most algorithm
parameters are chosen heuristically for the algorithms to
problem their best. We choose the Gaussian noise 50%,
∆t = 0.3, ε = 2 × 10−3 and the number of iterations is
700. We given firstly restore of noisy images (Figs. 2,3) by
our approach and we choose the parameter λ = 0.2. In
the second experiment, we give the difference between our
results, the method of the total variation [2], [5]–[7] and
the Perona-Malik model [1], [8], [10], [12] (see Fig 4, 6),
and we give also zoom in these results (see Fig, 5, 7). We
can notice from the results of PSNR in the figure 8 that
our model is better then the model of Perona-Malik and
the total variation method.

Fig. 1: Original image

Fig. 2: Noisy image
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Fig. 3: Restored image by using our model with
g(k) = 1

1 + ( kλ )2

(a) (b)

(c) (d)

Fig. 4: (a) The noisy image, (b) the image restored by
using the method of the total variation, (c) the image
restored by using the Perona-Malik model and (c) is
obtained by our model

(a) (b) (c)

Fig. 5: (a) Zoom in of the image restored by TV,
(b) zoom in of the image restored by PM and (c)
zoom in of the our model

(a) (b)

(c) (d)

Fig. 6: (a) The noisy image, (b) the image restored by
using the method of the total variation, (c) the image
restored by using the Perona-Malik model and (d) is
obtained by our model

(a) (b) (c)

Fig. 7: (a) Zoom in of the image restored by TV, (b) zoom
in of the image restored by PM and (c) zoom in of the our model

Fig. 8: The PSNR for different numbers of iterations for
image 1,2
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Iteration P SNROM P SNRT V P SNRP M

1 20.8668 20.8529 20.8520
100 21.2799 21.1378 21.1190
200 21.5155 21.3650 21.3607
300 21.6672 21.5327 21.5300
400 21.7134 21.6251 21.6340
500 21.7720 21.7184 21.7105
600 21.7989 21.7502 21.6962

TABLE I: PSNR comparisons for the three models
(for image 01)

Iteration P SNROM P SNRT V P SNRP M

1 20.8694 20.8591 20.8381
100 21.2846 21.1174 21.0856
200 21.5200 21.3370 21.2816
300 21.6341 21.4951 21.4376
400 21.6781 21.6149 21.5518
500 21.7456 21.6787 21.6234
600 21.7628 21.7153 /

TABLE II: PSNR comparisons for the three models
(for image 02)

IV. Conclusion
We present in this article a novel model for image

denoising (see [1]) when we shown their theoretical results.
These results give the best numerical outcome with a
better choice of parametres (∆t, λ,...), and we also present
that our model give a better PSNR when compared with
the model of Perona-Malik and the method of the total
variation. This model preserve the contours and removes
staircase during the image denoising.
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