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Abstract—Many of self-stabilizing algorithms have been pro-
posed in literature to deal with fault-tolerance in distributed
systems. Most existing works have utilized random graphs
(Erdos-Renyi networks) to simulate self-stabilizing algorithms.
In the present paper, we propose the use of self-stabilizing algo-
rithms on scale-free graphs (Barabasi-Albert networks) which are
more representative for real networks. After that, we test these
algorithms under evolutionary dynamic graphs. Performance is
evaluated using extensive simulations where three well known
self-stabilizing algorithms are tested: nodes coloring, minimal
dominating set and maximal independent set.

Index Terms—self-stabilization, scale-free network, dominating
set, independent set, nodes coloring, graph evolution

I. INTRODUCTION

Self-stabilization is a fault-tolerance approach for dis-
tributed systems that has been introduced by Djikistra in 1974.
A self-stabilizing distributed system is guaranteed to achieve
global correct configuration, in a finite time, even with pres-
ence of faults inside the system. Suppose a distributed system
is in illegitimate configuration after a transient fault, self-
stabilization allows to reach a legitimate configuration without
any external intervention. Various self-stabilizing distributed
algorithms have been proposed in the literature for graph
problems such as leader election, nodes coloring, domina-
tion problem, independent set identification, construction of
spanning tree. A detailed taxonomy of different self-stabilizing
algorithms can be found in [1].

Generally, graphs are used to represent networks and com-
plex systems in real-life applications like internet, social
networks, network of nerve cells, power grids, systems of
transportation, protein particulars, and a lot of other systems
that could be found in [2].

Most of the papers have studied self-stabilization on theo-
retical level using simple undirected graphs and only few of
works have used experimental tests on random graphs known
as Erdos-Renyi graphs [3]. In fact, it has been proved that most
of real networks cannot be represented by the model Erdos-
Renyi. Barabasi and Albert have proposed a model known
as scale-free network or Barabasi-Albert model [4]. After
collecting a set of statistics about real existing networks (like
www network, Movie actors, Paper citations) authors study
some parameters such as mean distance between two nodes,
clustering coefficient, degree distribution [2], [5]. For example
in random graphs, degree of the nodes is approximately the
same for all the nodes where the degree distribution follows
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Normal law. This distribution cannot explain the notion of
the hubs in the real complex networks where a few of nodes
have a very high level of degree. In the proposed model of
Barabasi and Albert, the degree is distributed the same manner
in real networks following a Power law distribution. Currently,
Barabasi-Albert graphs are the most known graphs which are
widely used by the community of graph literature.

A. Contribution

The previous works, proposed in literature, have imple-
mented self-stabilization only for random graphs and static
structure of graphs. Although Dolev et. al. have indicated that
uniform self-stabilizing algorithms can work under dynamic
graphs [6], there is no work that simulates self-stabilization
in the dynamic context where the graph structure is changing.
Our main contributions can be summarized as follows:

(i) We use and test three particular self-stabilizing algo-
rithms under scale-free graphs. The algorithms are: minimal
dominating set, maximal independent set and nodes coloring.

(i) We test self-stabilization under graph growing where at
any time, a new node comes to connect the existing graph.
We attempt to observe the behavior of the self-stabilizing
algorithms under the dynamic structure of the graphs.

B. Organization of the paper

The remainder of this paper is structured as follows. Section
II discusses the concept of self-stabilization. We give particular
explanation for three self-stabilizing algorithms i.e. minimal
dominating set, maximal independent set and nodes coloring.
In section III, scale-free graphs and complex networks are
presented. We introduce our version of the algorithm generat-
ing scale-free networks in section IV. Section V presents the
idea of integrating self-stabilization for evolutionary graphs.
Simulation tests and experiments are shown in section VI
followed by a conclusion in section VII.

II. SELF-STABILIZATION PROBLEM FORMULATION

In a self-stabilizing system, all the nodes have the same
collection of rules under the form: if guard then statement
(written generally as: guard — statement) and the same
local variables that describe the node’s state, where the guard
part is a set of boolean expressions and the statement is an
action on the node’s state to be committed if the guard is true.
The state of every node can be updated by the node itself
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using its rules. Each node has a partial view of the distributed
system (i.e. guard which consists of boolean expressions) on
its state and the states of the neighbors. A rule is said enabled
(or priviliged) if the guard is evaluated to be true. A node will
be enabled if at least one of its rules is enabled. Executing the
statement of the enabled rule by the node is called a move.
This execution allows updating the state (local variables) of
the node in order to be more legitimate with its neighborhood.

We are interesting in this work on uniform algorithm, where
all nodes in the distributed system execute the same program
or check the same set of rules. If there is no enabled rule for all
the nodes, the system is in the legitimate global configuration.
However, if there is at least one enabled rule (a move) in
the overall system, the system is considered not yet stable
and it is expected that the network will be in the correct
global configuration after executing a finite number of moves.
The execution of self-stabilizing algorithms is managed by
a daemon (scheduler) that selects the privileged nodes to
move from a configuration to another configuration. Two types
of daemons are widely used in self-stabilization literature:
central and distributed daemons. In the central daemons, one
privileged node is selected among all the privileged nodes to
be moved. However, in the distributed daemons, a subset of
nodes are selected among the set of privileged nodes to make a
move simultaneously. Detailed taxonomy introducing various
daemons can be found in [7]. In this paper, we discuss particu-
larly three well-known algorithms of self-stabilization: finding
maximal independent set, detection of minimal dominating set
and nodes coloring.

A. Maximal Independent Set (MIS)

Let G = (V, E) be a graph, where V is the set of nodes
and E is the set of edges. An independent set is a subset of
nodes S C V such that there is no two nodes connected in
S. The set S is said maximal if there is no superset S’ of S
such that S’ is an independent set. Maximal independent set
(MIS) is used in many practical applications like head clusters
in sensor networks. Shukla et al. [8] have proposed a self-
stabilizing algorithm to find the MIS. The idea is very simple:
anode v joins the set S if v has no neighbor in S, and v leaves
the set .S if at least one of its neighbors is in S. Each node
v has a local variable called ind that takes one value from
{0,1}. When v.ind = 1 that indicates v is in .S otherwise
v.ind = 0. In the legitimate global configuration, the set of
nodes {v,v.ind = 1} is MIS. Every node v has to check the
following two rules:

Rule 1: v.ind = 0AYu € N(v) : uind =0 — v.ind = 1

Rule 2: v.ind = 1A3u € N(v) : wind =1 — v.ind =0

Where N(v) is the set of v neighbors. It has been shown
that MIS self-stabilizing algorithm converges in O(n) moves
under central daemon [8].

B. Minimal Dominating Set (MDS)

In a graph G(V,E), a set of nodes S C V is called a

dominating set if every node v € V' is either a member of S
or is neighbor to a node of S. A dominating set S is minimal

if no proper subset of .S is a dominating set.
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Hedetniemi e al. [9] has proposed a self-stabilizing algo-
rithm for the minimal dominating set (MDS) problem. Each
node has a boolean variable that indicates whether it is in
S or not. To find a dominating set, the algorithm is based
on the following idea: a node joins the set S, if it has no
neighbor in S. A node that is a member of S, and has a
neighbor that is also a member of S, will leave the set if all its
neighbors are not pointing to it. Thus, after stabilization the set
S will be MDS. Although, the algorithm stabilizes in O(n?)
using central daemon, another proposed MDS algorithm [10]
converges to the global correct configuration in O(n).

Domination has been widely studied in literature and has
been adopted in many real-life applications. Address rout-
ing, power management, clustering in ad-hoc networks and
influence opinion in social networks are some examples of
domination application [11]-[14].

C. Nodes coloring

Coloring problem consists to assign one color to each node
such that no two adjacent nodes could have the same color.
Mathematically, for a graph G(V,E), coloring nodes is a
function ¢ : V' — N where c(i) # c(j) if ¢ and j are adjacent.

The elements of IV are called the available colors. If a graph
G may be colored using k colors, we say that is k —colorable.
The smallest value of k is called the chromatic number. Many
self-stabilizing algorithms have been proposed in literature.
Hedetniemi et al. [15] have proposed grundy coloring using
at most (A + 1) colors where A is the maximal degree in the
graph i.e. k < A. The drawback of this algorithm is that each
node must to know A which is considered as global infor-
mation. In self-stabilizing systems, it is preferable that nodes
know only a partial information about their neighborhood. The
algorithm converges to the legitimate global configuration in
O(n). Coloring is used generally for channel and frequency
assignment in wireless networks.

III. COMPLEX NETWORKS

Erdos and Renyi have proposed in 1959 a first model of
graphs based on the concept of randomness where every edge
has a probability to exist or to not-exist. The growing interest
in complex systems has led to collecting tremendous statistics
on real networks. In the past few years, many empirical results
showed [2], [5] that the model of Erdos-Renyi is very limited
and cannot represent large-scale real networks. For example,
the distribution of degree in random graphs, that follows
Normal law, cannot explain the notion of hubs in the real
complex networks where a few of nodes have a very high
level of degree.

Thus, Barabasi and Albert [4] have proposed the scale-
free model which has two main properties: graph evolution
and preferential attachment. For the first property, authors
assume that networks are constructed under time by growing.
At any moment, there is a new node that comes to connect
the existing graph (born of a new node) with an average of
connection called attachment degree. The attachment degree
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Algorithm 1 Generating Scale-free Graph

Input: n: graph size
d: attachment degree
Output: ¢: a scale-free graph
1: Let g be an initial full-connected subgraph of d nodes
where each node has Deg =d — 1

2: fori=d+1tondo

3:  Let ¢ be a new node of g with Deg; =0

4:  Let AttachDeg; be a random integer in [1, d)

5. for k =1 to AttachDeg; do

6: neighbor < Select an existing node of g proportion-
ally to its degree

7: Connect ¢ to netghbor

8: degneighbor — degneighbor +1

9:  end for

10:  deg; < AttachDeg;

11: end for

12: return g

is a parameter that indicates the average number of neighbors
like the average number of friends in a given social network.
The second property, every new node must to connect to the
existing nodes using preferential attachment law i.e. nodes
having high degree have more chances to be selected as
neighbors by the new node. Thus, each new node connects to
existing nodes with probability proportional to their degrees.

Scale-free networks have an important feature that appears
under the evolution process. Some nodes will be highly
connected and will be more attractive to be neighbors for the
new nodes, called hubs. This process is known as rich —get —
richer [2].

Instead using Erdos-Renyi graphs, we believe that the pres-
ence of the hubs in Barabasi-Albert model will give a different
behavior for self-stabilizing algorithms. In this sense, we
attempt to test self-stabilization under Barabasi-Albert graphs.
Firstly, using a set of well-known self-stabilizing algorithms,
we try to establish a comparison process of self-stabilization
under random graphs and scale-free networks. Secondly, we
check the feasibility of self-stabilization under graph evolution.
Notice that previous works has supposed that self-stabilization
is suitable only for fault-tolerance like dealing with problems
of memory corruption.

IV. GENERATING SCALE-FREE NETWORKS

In this section, we present our algorithm used for generating
synthetic Barabasi-Albert graphs. Although, there exists tools
to generate scale-free graphs like Networkx of Python, the
need to integrate the self-stabilizing algorithms under the
evolution of the graph leads us to propose our own generator
shown in algorithm 1.

The algorithm starts using an initial subgraph of d nodes.
In our case, we have used a full-connected graph as an initial
subgraph, but it is possible to utilize other structure, like full-
disconnected subgraph which is used in Networkx. Note that in
reality, d is always less and very small than n. In the next step,
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the graph evolution is represented by the coming of new nodes
one-by-one. Each new node connects to the existing graph by
preferential attachment where the degree of attachment of the
new node is a random value in [1, d]. In the case of Networkx,
the generator uses a constant attachment degree as d. However,
in our case we have used a random integer in [1, d] because,
in reality, new nodes connect with value close to (not fixed)
attachment degree.

Table I illustrates an example of generating three models
of graphs. The generated graphs have size of 1000 nodes
using an attachment degree of 10 for scale-free graphs and
a probability p = 0.01 for random graphs i.e. every node has
likely 10 neighbors. The degree distribution is shown in table
I. It indicates clearly the differences in degree distribution.
For random graphs, most of nodes have degree between 1 and
20. Generally the degree distribution fits a Normal law for
random graphs (where the mean equals 10 in this example).
For the scale-free graphs, the two generators give frequencies
that follow the well known power law distribution in Barabasi-

Albert model [5]. As for the Networkx generator, it gives
values of degree greater or equal to 10. This is due to the

manner the generator connects new coming nodes where every
node has to attach exactly to 10 neighbors. Thus, no node
could have a degree less than 10. This later problem does not
appear in our case because we use random values in [1,d] as
attachment degree to connect new nodes. It is possible to see
that the two algorithms gives hubs having degree greater than
100. Our generator gives 2 hubs while in the second there is
11 hubs, one of them has 177 neighbors. It is worth indicating
that we have observed during evolution, the hubs are generally
the nodes which are created at the beginning of the evolution.
For example in the case of Networkx generator, the hub (of
177 degree) is originally the first node coming directly after
constructing the initial subgraph. For our generator, the two
hubs are the nodes created during evolution at the moments 2
and 3 respectively. This does not reflect the reality because
hubs may be not created at the beginning of evolution in
complex networks. For example, in the network of paper
citation [2], hubs (papers highly referenced) could be created
at the middle of evolution.

TABLE I
DEGREE DISTRIBUTION ON THREE EXAMPLES OF SYNTHETIC GRAPHS

Number of nodes
Random generator Our generator Networkx generator
Degree Erdos-Renyi Barabasi-Albert Barabasi-Albert
1-9 468 637 0

10-19 529 262 736
20-29 3 51 134
30-39 0 15 51

40-49 0 11 25

50-59 0 10 15

60-69 0 6 10
70-100 0 18
101-177 0 2 11
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V. SLEF-STABILIZATION UNDER GRAPH EVOLUTION

All the previous works in literature have indicated that self-
stabilization is more suitable for fault-tolerance in distributed
systems. In this paper, we show that self-stabilization is
suitable too for the natural process of evolution that exists in
complex networks. The idea of integrating self-stabilization is
as follows: suppose at time ¢,, a graph G is stable (in legitimate
configuration) for a given algorithm. At time ¢, a new node
(n 4+ 1) comes to join the graph G. We suppose that at the
connection moment, the new node selects a random state for
itself. For example, in the MDS problem, the new node selects
randomly a value from {0, 1} to indicate if it is in MDS or
not. The connection of the new node with its random state
will probably make the graph G in illegitimate configuration.
Thus, the process of self-stabilizing must to react in order to
move to the global legitimate configuration again. Note that
the algorithm re-stabilizes after the addition of just one node.

Algorithm 2 Self-stabilization Under Evolution
Input: g: graph in legitimate configuration of n nodes
d: attachment degree
k: number of nodes will connect g
Output: ¢: graph in legitimate configuration of n + k nodes
1: for i =1 to k do
2:  Let ¢ be a new node with a random state
3 g < Connect ¢ to g with preferential attachment
4:  Reaction of self-stabilizing algorithm
5
6

: end for
: return g

For a long period of evolution i.e. lot of new connecting
nodes, the algorithm must to stabilize after adding new one
node before the coming of a second new node. It is possible
to consider the coming of new node like a fault that occurs
on the distributed system which the self-stabilizing algorithm
has to deal with it. Generally, it is assumed that the interval
between two faults (two new nodes) is so long to allow the
system executing its original task during the stable period.

VI. SIMULATIONS RESULTS

We conduct simulations on three sides: (1) executing
self-stabilization on scale-free graphs (2) comparing self-
stabilization on random graphs and scale-free graphs (3)
and test self-stabilization under graph evolution. Three self-
stabilizing algorithms are used in the experiments: maximal
independent set [8], [9], minimal dominating set [9] and
grundy coloring [15]. To check the efficiency : (i) we calculate
the speed of convergence (number of moves needed to achieve
legitimate configuration) and calculate a second parameter that
depends on the kind of the algorithm. For minimal dominating
set, we seek the cardinality of MDS. For maximal independent
set, the cardinality of MIS is taken into account. In the coloring
problem, the goal is to find the minimal number of colors.
Synthetic generated graphs, integration of self-stabilization
with evolution process and benchmark tests have been written

CopyrightlPCO-201!
ISSN1737-930X

in Java. However, we have used the Kuszner code [16] to
execute the above self-stabilizing algorithms under central
daemon. We take the average of calculation after conducting
5 tests in each experiment.

A. Attachment degree impact on self-stabilization

In this section, we study the behavior of self-stabilizing al-
gorithms under the impact of changing the attachment degree.
Curves are plotted using values of attachment degree ranging
from 2 to 100. For each algorithm, two sizes of graphs are
used: graphs with 1000 nodes and graphs with 5000 nodes.
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Fig. 1. Size of MDS according attachment degree

1) MDS: Figure 1 explains the relation between cardinality
of MDS and attachment degree. The MDS size is inversely
proportional to the attachment degree ¢.e. it decreases when
the attachment degree grows. This is a rational result because
it is expected that the cardinality will decrease when the
graph density grows. For example in full-connected graph, the
MDS cardinality is 1. It is worth to indicate that the minimal
obtained rate of MDS represents 7% of the entire population of
nodes (374 nodes in MDS from 5000 when AttachDeg = 97).
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Fig. 2. Time of convergence of MDS according attachment degree

Figure 2 shows the necessary number of moves in order to
converge to the legitimate configuration. It illustrates (nearly)
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a constant plot which means that the time of convergence
(number of moves) and graph density (attachment degree) are
independent. Observe that the top values of the plots (moves
number) are located in the positions of the maximal values of
cardinality shown in figure 1. Although Hedetniemi [9] has
proved that MDS algorithm stabilizes in O(n?), simulations
show a convergence in O(n). This later complexity has been
proved by Turau [10].
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Fig. 3. Size of MIS according attachment degree

2) MIS: In figure 3, for graphs of 5000 nodes, the MIS
size is in the interval [950,2900]. As for graphs of 1000
nodes, the MIS has size in [170,590]. When the graph density
(attachment degree) grows, the cardinality of MIS decreases
i.e. size of MIS is inversely proportional to the attachment
degree. According figures 1 and 3, MDS sets are always
smaller than MIS.
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Fig. 4. Time of convergence of MIS according attachment degree

Figure 4 shows the time of convergence for MIS stabi-
lization. When the degree attachment exceeds 10, time of
stabilization becomes almost constant. For graphs of 5000,
the number of moves is less than 3300 moves, and less than
700 for graphs of 1000 nodes. These results ensure the formal

proof that MIS stabilizes in O(n) [8].
3) Coloring: Figure 5 illustrates that 7 to 52 colors are

needed for coloring scale-free graphs of 1000 nodes. Number
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of colors is proportional to the graph density (attachment
degree). For graphs of 5000, we need a number of colors
between 8 and 71. Note that theoretically, the maximal value of
colors is (A+1) where A is the maximum degree in the graph
[15]. Our tests on scale-free graphs show that values given
by simulations does not reflect perfectly theoretical results.
In the presence of the hubs, A will be very high whereas
the number of colors, given in experiments, is very small
comparing to (A + 1). For example, graphs of 5000 nodes
(with attachment degree of 100) give easily hubs having more
than 900 neighbors whereas the maximal number of colors
will not exceed 80. Figure 6 ensures theoretical complexity
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O Graph with 5000 nodes

701

Colors number

i i i i
(o] 20 40 60 80
Attachment Degree

100

Fig. 5. Number of colors according attachment degree

obtained in [15] that grundy coloring converges in O(n).
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Fig. 6. Time of convergence of nodes coloring according attachment degree

B. Comparison

In this section, we try to observe the behavior of self-
stabilizing algorithms on random graphs and scale-free graphs.
We use graphs having sizes of 1000, 2000, ...,10000 nodes. For
more accurate results, we generate graphs having nearly the
same density (number of edges). For example, the keyword
used for curves legend: ScalefreelO is used for scale-free
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graphs and Random10 for random graphs where in both cases,
most of nodes have likely 10 neighbors. The same concept
is adopted for Random50 and Scalefree50 where every node
has high probability to be adjacent to 50 neighbors. These
values have been chosen according statistics given in previous
works [2], [5] where many of real scale-free networkx have
an average degree approximated to the taken values.

1) MDS: Random graphs give sets smaller than scale-free
graphs as shown in figure 7. In fact, up to now, we have
no explanation why random graphs give cardinality smaller
than scale-free graphs. In other side, plots given in this figure
confirm previous results that: more the graphs are dense,
smaller MDS are given. However, for the time of convergence,

2500 T T T T
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—4— Scalefree50
—+&— Random50

2000

1500

MDS size

1000

i i i i i
5000 6000 7000 8000 9000 10000

Graph size

0 i
1000 2000 3000 4000

Fig. 7. MDS size in random graphs and scale-free graphs

figure 8 illustrates that calculating MDS in scale-free graph is
faster than random graph. This is due to the cardinality where
MDS given by random graphs are smaller than scale-free
graphs, thus optimal sets need more time to reach legitimate
configuration.
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Fig. 8. Time of convergence (MDS) in random graphs and scale-free graphs

2) MIS: Recall that in MIS, we aim to maximize the set of
independent nodes unlike MDS where the set is minimized. In
figure 9, scale-free graphs give MIS sets bigger than random
graphs.
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Figure 10 shows that MIS of random graphs is found
quickly than scale-free graphs. More the MIS is bigger (max-
imal), self-stabilizing algorithm needs more time to stabilizes.
Bigger sets will need an increasing number of moves to be
found.
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Fig. 10. Time of convergence (MIS) in scale-free and random graphs

3) Coloring: The important observation given by figure 11
is the constant number of colors needed in random graphs
whatever the size of graphs. The number of colors is indepen-
dent from graph growing because the average degree remains
constant whatever the size of the graphs. It shows that for
random graphs with an average degree of 10, we need at most
8 colors and for random graphs with an average degree of
50, we need only 20 colors. For the scale-free graphs, the
number of colors is proportional to the attachment degree. It
increases slowly when the attachment degree grows. Generally,
scale-free graphs with large scale of nodes, contains hubs of
high degree. According [15] where the number of colors is
dependent to A, more the graph grows, hubs will use a greater
number of colors.

In figure 12, scale-free graphs find colors quickly than
random graphs. It is clear when the interval of choices (colors)
is large, it will be easy to find the colors.
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C. Evolution

In the previous simulations, graphs are supposed static.
Before activating the self-stabilization in static graphs, we
assign to each node a random state. After that the algorithm
starts until it converges to the legitimate global configuration.
However, in this section, we try to show that uniform self-
stabilizing algorithms can be integrated easily in Scale-free
graphs during the evolution process. The graph is supposed
stable (in legitimate configuration) before the attachment of a
new node. When the new node joins the existing graph, the
self-stabilizing algorithm starts execution in order to move to
the legitimate global configuration again.

In the experiments, we have generated a graph of 10000
nodes integrating self-stabilization (using the above three algo-
rithms). According Algorithm 1, after constructing the initial
subgraph of 10 nodes (attachment degree=10), the evolution
process begins immediately with the coming of 11** node.
The self-stabilizing process starts at the moment the 11%"
node joins the graph. At this moment, the algorithm has
to converge to the correct configuration (the graph is now
formed with 11 nodes). Every time there is new node who

joins the existing graph, self-stabilizing process is reacting to
correct the graph configuration because there is a probability
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that the new node dis-stabilizes the legitimate configuration.
The alternative process, add new node / reaction of self-
stabilization, is executed from the joining of the 11** node
to the 10000*" node.

Figure 13 shows a partial interval of the alternative process,
add node / reaction of self-stabilization, between the coming of
nodes 5010 and 5020. Self-stabilizing algorithms give different
results. Generally, there is two cases. In the first case , the
new node does not influence the global configuration of the
graph where there is no executed moves. In this case where
the number of moves is not growing, the new node joins the
graph selecting a random state without activating its own rules
of self-stabilization which means that the new node is in a
correct state at least with its neighborhood. In the second
case, the number of moves grows when just one new node
joins the existing graph. The new node dis-stabilizes the global
configuration by executing at least one move which means that
the node or one of its neighbors has enabled a rule in order
to correct the global configuration. The maximal number of
moves executed, for a new node addition, is given by node
5019 in the MDS algorithm where 4 moves are executed for
the stabilization of the algorithm (from 9956 to 9960). For 10
added nodes, the coloring problem is the algorithm that needs
a greater number of moves for stabilization (18 moves from
7060 to 7078) whereas the MIS algorithms needs 5 moves
(smaller number) in the interval of the 10 new nodes. Other
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Fig. 13. Self-stabilization for 10 new nodes attaching with degree 10 on
scale-free graph of 5010 nodes

results shown by figure 13 are the following. The coloring
problem still uses a constant number of colors in this interval.
MDS cardinality is increased by including new 5 nodes in the
MDS from the 10 possible. The size of MIS grows by adding
3 new nodes in MIS from 10 nodes possible.

Table II gives some results extracted from the entire evo-
lution from the 11** node to the 10000*" node. Although
these results are calculated for evolutionary graphs, it will
be possible to compare them with static graphs. For the
convergence time, static graphs seems faster than evolutionary
graphs (according plots ScaleFreel( in figures 8, 10 and 12
). Recall that dynamic graphs stabilizes gradually i.e. a new


User1
Typewritten Text
Copyright IPCO-2019
ISSN 1737-930X

User1
Typewritten Text
International Journal of Computer Science, Communication & Information Technology (CSCIT)
Vol.6 pp.19-26


Internationallournalof ComputerScience Communicatior& InformationTechnology(CSCIT,

Vol.6 pp.19-26

TABLE II
RESULTS OF SELF-STABILIZING ALGORITHMS DURING GRAPH EVOLUTION
MDS MIS Coloring

Graph Moves ‘ Size ‘ Moves ‘ Size ‘ Moves | Colors nbr

11 12 5 1 5 7 3
1000 1912 297 849 418 1442 9
2000 3989 627 1733 858 2852 10
3000 6024 936 2525 1280 4237 10
4000 7958 1252 3398 1698 5650 10
5000 9924 1588 4191 2097 7038 10
6000 12043 | 1877 5071 2499 8364 10
7000 14138 | 2187 5909 2889 9787 10
8000 16235 | 2487 6774 3305 11190 10
9000 18332 | 2809 7593 3721 12587 10
10000 20317 | 3139 8493 4144 13949 10

graph with n nodes corrects its configuration knowing that the
old graph of n—1 is in legitimate configuration. Only the new
joining could move to an illegitimate configuration. However
in the static graphs, the global legitimate configuration must be
achieved after starting from an unknown global random state.
Moreover, comparing table II with figures 7, 9 and 11 shows
that static graphs gives smaller MDS sets. Whereas dynamic
graphs produce maximal sets for MIS and give smaller number
of colors for the coloring problem.

VII. CONCLUSION

In this paper, self-stabilization is tested under scale-free
graphs using a set of well-known algorithms. We have illus-
trated also how self-stabilization works under graph evolution.
This later demonstration is important if we know that most of
real networks are constructed under evolution. From a point
of view application, our work shows that self-stabilization is
suitable for distributed systems where the structure is in con-
tinuous change according to the evolution process introduced
by Barabasi.

Our simulation tests give various results under scale-free
graphs, particularly for the problems of: graph coloring,
detecting minimal dominating set and finding the maximal
independent set.

In the future, we hope to test self-stabilization on graphs
with more dynamic structures such as nodes leaving. We will
try to interpret some results like the reason random graphs
produce smaller sets of MDS and MIS than scale-free graphs.
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